Skip to main content

Extracting Interface Absorption Effects from First-Principles

  • Chapter
  • First Online:
The Nanoscale Optical Properties of Complex Nanostructures

Part of the book series: Springer Theses ((Springer Theses))

  • 493 Accesses

Abstract

The focus of this dissertation now switches from the introduction of analytical techniques to the actual application of those techniques in study of nanoscale optical properties. In this chapter, first-principles DFT calculations of the dielectric function are used to determine the effects of an interface on the absorption of a multilayer heterostructure. This results and figures in this chapter are reproduced from Ref. [1] with permission from AIP Publishing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hachtel, J.A., Sachan, R., Mishra, R., Pantelides, S.T.: Quantitative firstprinciples theory of interface absorption in multilayer heterostructures. Appl. Phys. Lett. 107, 091908 (2015)

    Article  ADS  Google Scholar 

  2. Pasquarello, A., Hybertsen, M.S., Car, R.: Si 2p core-level shifts at the Si(001)-SiO2 interface: a first-principles study. Phys. Rev. Lett. 74, 1024–1027 (1995)

    Article  ADS  Google Scholar 

  3. Wang, Z., Wang, J., Sham, T.-K., Yang, S.: Tracking the interface of an individual ZnS/ZnO nano-heterostructure. J. Phys. Chem. C 116, 10375–10381 (2012). ISSN: 1932-7447

    Article  Google Scholar 

  4. Xing, G., et al.: Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014). ISSN: 1476-1122

    Article  ADS  Google Scholar 

  5. Pavesi, L., Dal Negro, L., Mazzoleni, C., Franzò, G., Priolo, F.: Optical gain in silicon nanocrystals. Nature 408, 440–444 (2000). ISSN: 0028-0836

    Article  ADS  Google Scholar 

  6. Rogalski, A.: Quantum well photoconductors in infrared detector technology. J. Appl. Phys. 93, 4355–4391 (2003). ISSN: 0021-8979, 1089-7550

    Google Scholar 

  7. Grätzel, M.: Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 44, 6841–6851 (2005). ISSN: 0020-1669

    Article  Google Scholar 

  8. Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)

    Article  ADS  Google Scholar 

  9. Sachan, R., et al.: Enhanced absorption in ultrathin Si by NiSi2 nanoparticles. Nanomater. Energy 2, 11–19 (2013). ISSN: 2045-9831, 2045-984X

    Google Scholar 

  10. Shi, N., Ramprasad, R.: Atomic-scale dielectric permittivity profiles in slabs and multilayers. Phys. Rev. B 74, 045318 (2006)

    Article  ADS  Google Scholar 

  11. Luo, W., Pennycook, S.J., Pantelides, S.T.: Magnetic “dead” layer at a complex oxide interface. Phys. Rev. Lett. 101, 247204 (2008)

    Article  ADS  Google Scholar 

  12. Popescu, V., Zunger, A.: Localized interface states in coherent isovalent semiconductor heterojunctions. Phys. Rev. B 84, 125315 (2011)

    Article  ADS  Google Scholar 

  13. Pinchuk, A., Kreibig, U., Hilger, A.: Optical properties of metallic nanoparticles: influence of interface effects and interband transitions. Surf. Sci. 557, 269–280 (2004). ISSN: 0039-6028

    Article  ADS  Google Scholar 

  14. Oubre, C., Nordlander, P.: Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method. J. Phys. Chem. B 108, 17740–17747 (2004). ISSN: 1520-6106

    Article  Google Scholar 

  15. Catchpole, K.R., Polman, A.: Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. 93, 191113–191113-3 (2008). ISSN: 00036951

    Google Scholar 

  16. Carrier, P., Lewis, L.J., Dharma-wardana, M.W.C.: Optical properties of structurally relaxed Si/SiO_{2} superlattices: the role of bonding at interfaces. Phys. Rev. B 65, 165339 (2002)

    Article  ADS  Google Scholar 

  17. Giustino, F., Umari, P., Pasquarello, A.: Dielectric discontinuity at interfaces in the atomic-scale limit: permittivity of ultrathin oxide films on silicon. Phys. Rev. Lett. 91, 267601 (2003)

    Article  ADS  Google Scholar 

  18. Luppi, M., Ossicini, S.: Ab initio study on oxidized silicon clusters and silicon nanocrystals embedded in SiO_{2}: beyond the quantum confinement effect. Phys. Rev. B 71, 035340 (2005)

    Article  ADS  Google Scholar 

  19. Giustino, F., Pasquarello, A.: Infrared spectra at surfaces and interfaces from first principles: evolution of the spectra across the Si(100)-SiO_{2} interface. Phys. Rev. Lett. 95, 187402 (2005)

    Article  ADS  Google Scholar 

  20. Klipstein, P.C., et al.: A k . p model of InAs/GaSb type II superlattice infrared detectors. In: Infrared Physics & Technology. Proceedings of the International Conference on Quantum Structure Infrared Photodetector (QSIP) 2012, vol. 59, pp. 53–59 (2013). ISSN: 1350-4495

    Google Scholar 

  21. Brezesinski, T., Wang, J., Polleux, J., Dunn, B., Tolbert, S.H.: Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J. Am. Chem. Soc. 131, 1802–1809 (2009). ISSN: 0002-7863

    Article  Google Scholar 

  22. Milliron, D.J., Buonsanti, R., Llordes, A., Helms, B.A.: Constructing functional mesostructured materials from colloidal nanocrystal building blocks. Acc. Chem. Res. 47, 236–246 (2014). ISSN: 0001-4842

    Article  Google Scholar 

  23. Barg, S., et al.: Mesoscale assembly of chemically modified graphene into complex cellular networks. Nat. Commun. 5 (2014/2015). https://doi.org/10.1038/ncomms5328. http://www.nature.com.proxy.library.vanderbilt.edu/ncomms/2014/140707/ncomms5328/full/ncomms5328.html

  24. Llordés, A., Garcia, G., Gazquez, J., Milliron, D.J.: Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500, 323–326 (2013). ISSN: 0028-0836

    Article  ADS  Google Scholar 

  25. Kresse, G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993)

    Article  ADS  Google Scholar 

  26. Kresse, G., Hafner, J.: Ab initio molecular-dynamics simulation of the liquidmetal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994)

    Article  ADS  Google Scholar 

  27. Blochl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). ISSN: 1098-0121

    Article  ADS  Google Scholar 

  28. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  29. Gajdoš, M., Hummer, K., Kresse, G., Furthmüller, J., Bechstedt, F.: Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73, 045112 (2006)

    Article  ADS  Google Scholar 

  30. Fox, M.: Optical Properties of Solids. Oxford University Press, Oxford (2010)

    Google Scholar 

  31. Heyd, J., Scuseria, G.E., Ernzerhof, M.: Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003). ISSN: 0021-9606, 1089-7690

    Google Scholar 

  32. Heyd, J., Scuseria, G.E., Ernzerhof, M.: Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 124, 219906 (2006). ISSN: 0021-9606, 1089-7690

    Google Scholar 

  33. Hedin, L.: Something to do with GW. Phys. Rev. 139, A796 (1965)

    Article  ADS  Google Scholar 

  34. Rohlfing, M., Louie, S.G.: Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 62, 4927–4944 (2000)

    Article  ADS  Google Scholar 

  35. Amiotti, M., Borghesi, A., Guizzetti, G., Nava, F.: Optical properties of polycrystalline nickel silicides. Phys. Rev. B 42, 8939–8946 (1990)

    Article  ADS  Google Scholar 

  36. Zhu, L., Luo, J.K., Shao, G., Milne, W.I.: On optical reflection at heterojunction interface of thin film solar cells. Solar Energy Mater. Solar Cells 111, 141–145 (2013). ISSN: 0927-0248

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hachtel, J.A. (2018). Extracting Interface Absorption Effects from First-Principles. In: The Nanoscale Optical Properties of Complex Nanostructures. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-70259-9_3

Download citation

Publish with us

Policies and ethics