Effect of Environmental Conditions on Distribution Patterns of Rove Beetles

Chapter

Abstract

This chapter aims to give a review about the impact of environmental conditions on Staphylinidae. Densities in diverse ecosystems from northern to tropical and from marine to alpine ecosystems are listed. As most Staphylinidae belong to the soil fauna, soil conditions are of main interest. Thus, life forms of soil-dwelling species are described. The effects of the parameter moisture, soil pH, acidity, and salinity on staphylinid occurrence are taken into consideration. Furthermore, the staphylinid faunas of main contrasting ecosystem type are reviewed: forests vs. agricultural fields, coasts vs. montane, and alpine ecosystems. Finally, since many rove beetle species have an affinity to nests, fungi, etc., the importance of microhabitats for Staphylinidae is described. Here, the special ecology of dung-dwelling and fungi-dwelling species is given such as the impact of the ephemeral food resource on the development.

References

  1. Andersen A, Eltun R (2000) Long-term developments in the carabid and staphylinid (Col., Carabidae and Staphylinidae) fauna during conversion from conventional to biological farming. J Appl Ecol 124:51–56Google Scholar
  2. Andersen T, Ligaard S, Pedersen T et al (1990) Pitfall catches of Carabidae and Staphylinidae (Coleoptera) in a temporarily protected forest area on the Eidanger peninsula, Telemark, Norway. Fauna Norv Ser B 37:13–22Google Scholar
  3. Andreesen B (1984) Studien zur Ökologie und Biologie pilzbewohnender Kurzflügelkäfer (Coleoptera: Staphylinidae). Unpublished Diploma thesis, University of Kiel, Germany, 64pGoogle Scholar
  4. Ashe JS (1981) Studies on the life history and habits of Phanerota fasciata Say (Coleoptera, Staphylinidae, Aleocharinae) with notes on the mushroom as a habitat and descriptions of the immature stages. Coleopt Bull 3:81–96Google Scholar
  5. Ashe JS (1984) Major features of the evolution of relationships between gyrophaenine staphylinid beetles (Coleoptera: Staphylinidae) and fresh mushrooms. In: Wheeler Q, Blackwell M (eds) Fungus-insect relationships: perspectives in ecology and evolution. Columbia University Press, New York, pp 227–255Google Scholar
  6. Ashe JS (1987) Egg chamber production, egg protection, and clutch size among fungivorous beetles of the genus Eumicrota (Coleoptera: Staphylinidae) and their evolutionary implications. Zool J Linn Soc 90:255–273Google Scholar
  7. Ashe J (1993) Mouthpart modifications correlated with fungivory among aleocharine staphylinids (Coleoptera: Staphylinidae: Aleocharinae). In: Schaefer CW, Leschen R (eds) Functional morphology of insect feeding. Thomas Say Publications in Entomology, Lanham, pp 105–130Google Scholar
  8. Basedow T (1990) Jährliche Vermehrungsraten von Carabiden und Staphyliniden bei unterschiedlicher Intensität des Ackerbaus. Zool Beitr N F 33:459–477Google Scholar
  9. Benick L (1952) Pilzkäfer und Käferpilze. Ökologische und statistische Untersuchungen. Acta Fenn 70:250Google Scholar
  10. Betz O, Thayer MK, Newton AF (2003) Comparative morphology and evolutionary pathways of the mouthparts in spore-feeding Staphylinoidea (Coleoptera). Acta Zool 64:179–238Google Scholar
  11. Bohac J (1999) Staphylinid beetles as bioindicators. Agric Ecosyst Environ 74:357–372Google Scholar
  12. Bohac J, Jedlicka P, Frouz J (1999) Changes in communities of staphylinid beetles (Coleoptera, Staphylinidae) during secondary succession in abandoned fields. In: Tajovsky K, Pizl V (eds) Soil zoology in Central-Europe. ISB AS CR, Budejovice, pp 19–25Google Scholar
  13. Bong L-J, Neoh K-B, Jaal Z et al (2013) Influence of temperature on survival and water relations of Paederus fuscipes (Coleoptera: Staphylinidae). J Med Entomol 50:1003–1013PubMedGoogle Scholar
  14. Bråten AT, Flo D, Hågvar O et al (2012) Primary succession of surface active beetles and spiders in an alpine glacies foreland, Central South Norway. Arct Antarct Alp Res 44:2–15Google Scholar
  15. Cabrera-Walsh G, Chiani-Posse M (2003) Abundance and seasonal distribution of predatory coprophilous Argentine rove beetles (Coleoptera: Staphylinidae), and a discussion of their effect on the community of dung breeding flies. Coleopt Bull 57:43–50Google Scholar
  16. Chani-Posse MR (2004) Eight Argentinean species of dung-inhabiting Philonthus Stephens (Coleoptera: Staphylinidae). Stud Neotropical Fauna Environ 39:212–232Google Scholar
  17. Coiffait H (1972) Coléoptères Staphylinidae de la region Paléarctique occidentale. Nouv Rev Entomol 2:651Google Scholar
  18. Coombes DS, Sotherton NW (1986) The dispersal and distribution of polyphagous predatory Coleoptera in cereals. Ann Appl Biol 108:461–474Google Scholar
  19. Da Rosa LC, Borzone CA, Caron E (2008) Occorencia de Diglotta brasilienis (Coleoptera: Staphylinidae: Aleocharinae) em duas praias estuarinas Baía de Paranguá, sul do Brasil. Rev Bras Zootec 25:563–565Google Scholar
  20. De Zordo I (1979) Ökologische Untersuchungen an Wirbellosen des centralalpinen Hochgebirges (Obergurgel, Tirol). III. Lebenszyklen und Zönotik von Coleopteren. Veröff Univ Innsbruck 118:132Google Scholar
  21. Eghtedar E (1970) Zur Biologie und Ökologie der Staphyliniden Philonthus fuscipennis Mannh.und Oxytelus rugosus Grav. Pedobiologia 10:169–179Google Scholar
  22. Fernández V, Gamarra P, Outerelo R et al (2010) Distribución de stafilíninos necrófilos (Coleoptera, Staphylinidae, Staphylininae) a lo largo de un gradiente altitudinal en la Sierra de Guadarrama, España. Bol R Soc Esp Hist Nat 104:61–86Google Scholar
  23. Frank JH, Ahn K-J (2011) Coastal Staphylinidae (Coleoptera): a worldwide checklist, biogeography and natural history. Zookeys 107:1–96Google Scholar
  24. Friebe B (1982) Die Makroarthropodenfauna eines Buchenwaldbodens unter besonderer Berücksichtigung der Coleoptera. Dissertation, Universität Karlsruhe, p 141Google Scholar
  25. Gilgenberg A (1986) Die Verteilungsstruktur der Carabiden- und Staphylinidenfauna verschieden bewirtschafteter landwirtschaftlicher Flächen sowie eines Waldes. Dissertation, Universität Bonn, p 262Google Scholar
  26. Goodrich MA, Hanley RS (1995) Biology, development and larval characters of Oxyporus major (Coleoptera:Staphylinidae). Entomol News 106:161–168Google Scholar
  27. Gryuntal SY (2009) Soil mesofauna of taiga burozems. Eurasian Soil Sci 42:1374–1381Google Scholar
  28. Gutièrrez Chacòn C, Ulloa Chacòn P (2006) Composición de Estafilinido (Coleoptera: Staphylinidae) asociados a hojarasca en la Cordilliera oriental de Colombia. Fol Entomol Mex 45:69–81Google Scholar
  29. Hanley RS, Goodrich MA (1994) Natural history, development, and immature stages of Ocypus stygicus Say (Coleoptera, Staphylinidae). Coleopt Bull 48:213–225Google Scholar
  30. Hartmann P (1976) Struktur und Dynamik von Staphyliniden-Populationen in Buchenwäldern des Solling. Verh Ges Ökol 5:75–81Google Scholar
  31. Hartmann P (1979) Biologisch-Ökologische Untersuchungen an Staphylinidenpopulationen verschiedener Ökosysteme des Solling. Dissertation, Universität Göttingen, p 173Google Scholar
  32. Hemp C, Winter JC (1999) Ethnozoologische Feldforschung am Kilimanjaro. Arthropoda. Bayreuther Forum Ökol 64:167–199Google Scholar
  33. Henneberg L (2004) Biologie der Interaktion zwischen Koleopteren und agaricoiden Basidiomyceten. Ph.D. thesis, University of Marburg, Germany, 363pGoogle Scholar
  34. Herman L (2001) Catalogue of the Staphylinidae (Insecta: Coleoptera). 1758 to the end of the second millennium. I. Introduction, history, biographical sketches, and omaliine group. Bull Am Mus Nat Hist 265:649Google Scholar
  35. Heydemann B (1962) Der Einfluss des Deichbaus an der Nordsee auf Larven und Imagines von Carabiden und Staphyliniden. Ber 9. Wandervers Dtsch Entomol 45:237–273Google Scholar
  36. Holdhaus K (1954) Die Spuren der Eiszeit in der Tierwelt Europas. Abh Zool-Bot Gesell Wien 18:493Google Scholar
  37. Holland JM, Thomas CFG, Birkett T et al (2007) Spatio-temporal distribution and emergence in arable fields in relation to soil moisture. Bull Entomol Res 97:89–100PubMedGoogle Scholar
  38. Hunter JS, Fincher GT, Bay DE et al (1991) Seasonal distribution and dial flight activity of Staphylinidae (Coleoptera) in open and wooded pastures in East Central Texas Staphylinidae associated with dung. J Kansas Entomol Soc 64:163–173Google Scholar
  39. Hwang WS, Hanley R, Ahn KJ (2002) Immature stages of Oxporus germanus Sharp (Coleoptera: Staphylinidae: Oxyporinae). J Kansas Entomol Soc 75:214–222Google Scholar
  40. Irmler U (1978) Die Struktur der Carabiden- und Staphylinidengesellschaften in zentralamazonischen Überschwemmungswäldern. Amazoniana 6:301–326Google Scholar
  41. Irmler U (1993) Die Kurzflügelkäfer (Staphylinidae) des Bodens schleswig-holsteinischer Wälder. Verh Westdtsch Entomol Tag, pp 69–77Google Scholar
  42. Irmler U (1995) Die Stellung der Bodenfauna im Stoffhaushalt schleswig-holsteinischer Wälder. Faun-Ökol Mitt 18:199Google Scholar
  43. Irmler U (1998) Die vertikale Verteilung flugaktiver Käfer (Coleoptera) in drei Wäldern Norddeutschlands. Faun-Ökol Mitt 7:387–404Google Scholar
  44. Irmler U (2006) Climatic and litter fall effects on collembolan and oribatid mite species and communities in a beech wood based on a 7 years investigation. Eur J Soil Biol 42:51–62Google Scholar
  45. Irmler U (2009) Gradiental changes and temporal fluctuations of rove beetles (Coleoptera: Staphylinidae) in northern German woodland. Faun-Ökol Mitt 9:1–15Google Scholar
  46. Irmler U (2012) Effects of habitat and human activities on species richness and assemblages of Staphylinidae (Coleoptera) in the Baltic Sea coast. Psyche 2012:1–12Google Scholar
  47. Irmler U, Gürlich S (2007) What do rove beetles (Coleoptera, Staphylinidae) indicate for site conditions. Faun-Ökol Mitt 8:439–455Google Scholar
  48. Irmler U, Heller K (2002) Zonierung der Staphylinidae in einem Salzgrünland der schleswig-holsteinischen Nordseeküste. Faun-Ökol Mitt 8:219–229Google Scholar
  49. Irmler U, Heller K, Warning J (1997) Kurzflügelkäfer (Staphylinidae) aus Totholz schleswig-holsteinischer Wälder. Faun-Ökol Mitt 7:307–318Google Scholar
  50. Kasule K (1968) Field studies on the life-histories of some British Staphylinidae. Trans Soc Brit Entomol 1:49–80Google Scholar
  51. Klimaszewski J, Pace R, Center TD, Couture J (2010) A remarkable new species of Himalusa Pace from Thailand (Coleoptera, Staphylinidae, Aleocharinae): phytophagous aleocharine beetle with potential for bio-control of skunkvine-related weeds in the United States. Zookeys 35:1–12Google Scholar
  52. Koskela H (1972) Habitat selection of dung-inhabiting Staphylinids (Coleoptera) in relation to the age of dung. Ann Zool Fenn 9:156–171Google Scholar
  53. Krasutski BV (2010) Coleoptera associated with tree fungus Trichaptum biforme (Fr. in Klotzsch) (Basidiomycetes; Aphyllophorales) in the forests of the Urals and the Trans-Ural area. Entomol Rev 90:679–688Google Scholar
  54. Krogerus H (1948) Ökologische Untersuchungen über Uferinsekten. Acta Zool Fenn 53:157Google Scholar
  55. Larsen EB (1936) Biologische Studien über die tunnelgrabenden Käfer auf Skallingen. Videnskabelinge Meddelelser fra Dansk naturhistorisk Forening 109:231Google Scholar
  56. Leschen RAB, Allen RT (1988) Immature stages, life histories and feeding mechanisms of three Oxyporus spp. (Coleoptera: Staphylinidae: Oxyporinae). Coleopt Bull 42:321–333Google Scholar
  57. Levesque C, Levesque G-Y (1995) Abundance, diversity and dispersal power of rove beetles (Coleoptera: Staphylinidae) in a Raspberry plantation and adjacent sites in eastern Canada. J Kansas Entomol Soc 68:355–370Google Scholar
  58. Lincoln DCR (1961) The oxygen and water requirements of the egg of Ocypus olens Müller (Staphylinidae, Coleoptera). J Insect Physiol 7:265–272Google Scholar
  59. Lipkow E (1966) Biologisch-ökologische Untersuchungen über Tachyporus-Arten und Tachinus rufipes (Col., Staphyl.) Pedobiologia 6:140–177Google Scholar
  60. Lipkow E (1997) Zur Biologie, Fortpflanzung, Wirtswahl und Konkurrenzvermeidung von Oxyporus Arten (Coleoptera: Staphylinidae). Faun–Ökol Mitt 7:297–305Google Scholar
  61. Lipkow E (2011) Observations to the Life history with dung-inhabiting Staphylinidae (Coleoptera). Faun–Ökol Mitt 9:225–246Google Scholar
  62. Lipkow E, Betz O (2005) Staphylinidae and fungi. Faun–Ökol Mitt 8:383–411Google Scholar
  63. Lipkow E, Irmler U (2016) Habitat choice experiments with dung-inhabiting beetles (Coleoptera: Staphylinidae, Hydrophilidae, Scarabaeidae). Faun-Ökol Mitt 9:471–481Google Scholar
  64. Lupi D, Colombo M, Zanetti A (2006) The rove beetles (Coleoptera Staphylinidae) of three horticultural farm in Lombardy (Northern Italy). Boll Zool agr Bachic 38:143–165Google Scholar
  65. Moore I, Legner EF (1976) Intertidal rove beetles (Coleoptera: Staphylinidae). In: Cheng L (ed) Marine insects. North-Holland Companay, Oxford, pp 521–565Google Scholar
  66. Newton AF (1984) Mycophagy in Staphylinoidea (Coleoptera). In: Wheeler QD, Blackwell M (eds) Fungus-insect relationships. Columbia University Press, New York, pp 302–353Google Scholar
  67. Noriega JA, Navarrete-Heredia JL (2013) Quantification of predation on the dung beetle Canthidium cupreum (Col., Scarabaeidae) by Leistotrophus versicolor (Col., Staphylinidae). Coleopt Bull 67:190–1993Google Scholar
  68. Onipchenko VG (2004) Alpine ecosystems in the northwest Caucasus. Springer, Dordrecht, p 410Google Scholar
  69. Ottesen PS (1996) Niche segregation of terrestrial alpine beetles (Coleoptera) in relation to environmental gradients and phenology. J Biogeogr 23:353–369Google Scholar
  70. Pace R (2008) New records of Aleocharinae from Ecuador and Peru with description of new species, new subgenera and new genera (Coleoptera, Staphylinidae). Biodiversity of South America, I. Membr Biodivers 1:225–398Google Scholar
  71. Paill W, Kahlen M (2009) Coleoptera (Käfer). In: Rabitsch W, Essl F (eds) Endemiten – Kostbarkeiten in Österreichs Pflanzen- und Tierwelt. Naturwiss Ver und Umweltbundesamt GbmH, Wien, pp 627–783Google Scholar
  72. Palmgren P, Biström O (1979) Populations of Araneae (Arachnoidea) and Staphylinidae (Coleoptera) on the floor of a primeval forest in Mäntyharju, southern Finland. Ann Zool Fenn 16:177–182Google Scholar
  73. Parmain G, Bouget C, Müller J et al (2015) Can rove beetles (Staphylinidae) be excluded in studies focusing on saproxylic beetles in central European beech forests? Bull Entomol Res 105:101–109PubMedGoogle Scholar
  74. Petrenko AA (2013) About hunting methods of predatory rove beetles using Ontholestes murinus (Coleoptera: Staphylinidae) as an example. Kharkov Entomol Soc Gaz 21:9–11 (in Russian)Google Scholar
  75. Reise K, Weidemann G (1975) Dispersion of predatory forest floor arthropods. Pedobiologia 15:106–128Google Scholar
  76. Renken W (1956) Untersuchungen über Winterlager von Insekten. Z Morph Ökol Tiere 45:34–106Google Scholar
  77. Rose A (2001) Räumliche und zeitliche Verteilungsmuster von Kurzflügelkäfern (Coleoptera, Staphylinidae) auf Nordsee-Düneninseln unterschiedlicher Sukzessionsstadien. Arch Zool Pub 5:220Google Scholar
  78. Ruiz-Delgado C, Reyes-Martínez J, Sánchez-Moyano JE et al (2015) Distribution patterns of supralittoral arthropods: wrack deposits as a source of food and refuge on exposed sandy beaches (SW Spain). Hydrobiologia 742:205–219Google Scholar
  79. Ruiz-Delgado C, Vierheller Vieira J, Gomes Veloso V et al (2014) The role of wrack deposits for supralittoral arthropods: an example using Atlantic sandy beaches of Brazil and Spain. Estuar Coast Shelf Sci 136:61–71Google Scholar
  80. Sawada K (1991) On new genera and species of intertidal Aleocharinae (Coleoptera: Staphylinidae) and Goniacerinae (Pselpahinae) from Singapore and Japan. Raffles Bull Zool 39:141–152Google Scholar
  81. Schatz I (2008) Kurzflügelkäfer (Coleoptera: Staphylinidae) im Naturpark Schlern – Rosengarten (Südtirol, Italien). Gredleriana 8:377–410Google Scholar
  82. Scheerpeltz O, Höfler K (1948) Käfer und Käferpilze. Verlag Jugend und Volk, Wien, p 351Google Scholar
  83. Schigel DS (2012) Fungivory and host associations of Coleoptera: a bibliography and review of research approaches. Mycology 3:258–272Google Scholar
  84. Schlüter D (1988) Spezielle Beiträge zur Biologie von Platystethus arenarius Fourc. Diploma thesis, Freie Universität BerlinGoogle Scholar
  85. Schminke G (1978) Einfluß von Temperatur und Photoperiode auf Entwicklung und Diapause einiger Staphylinidae. Pedobiologia 18:1–21Google Scholar
  86. Schröter L (2010) Lauf- und Kurzflügelkäfer während der Umstellung zum ökologischen Landbau auf Hof Ritzerau. Faun-Ökol Mitt 36:144Google Scholar
  87. Setsuda KI (1994) Construction of the egg chamber and protection of the eggs by female Oxyporus japonicus Sharp (Coleoptera: Staphylinidae). Jpn J Entomol 62:803–809Google Scholar
  88. Sotherton NW (1985) The distribution and abundance of predatory Coleoptera overwintering in field boundaries. Ann Appl Biol 106:423–429Google Scholar
  89. Staniec B (2005) A description of the developmental stages of Acylophorus wagenschieberi Kiesenwetter, 1850 (Coleoptera, Staphylinidae), with comments on its biology, egg parasite and distribution in Polandy. Dtsch Entomol Z 52:97–113Google Scholar
  90. Staniec B, Pietrykowska-Tudruj E (2007) Developmental stages of Philonthus rubripennis Stephens (Col. Staphylinidae) with comments on its biology. Dtsch Entom Z 54:95–113Google Scholar
  91. Stefani FOP, Klimaszewski J, Morency MJ, et al (2016) Fungal community in the gut of rove beetles (Coleoptera: Staphylinidae) from the Canadian boreal forest reveals possible endosymbiontic interactions for dietary needs.In: Fungal ecology. Elsevier, AmsterdamGoogle Scholar
  92. Steinmetzger K, Tietze F (1982) Ein Beitrag zur Faunistik und Habitatbindung der Staphyliniden in Kiefernforstgesellschaften der Dübener Heide (Insecta, Coleoptera). Faun Abh Dresden 9:61–77Google Scholar
  93. Tan B, Fuzhong W, Wanqin Y et al (2013) Seasonal dynamics of soil fauna in the subalpine and alpine forests of west Sichuan at different altitudes. Acta Ecol Sin 33:12–22Google Scholar
  94. Thayer MK (1985) Micralymma marinum (Stroem) in North America: biological notes and new distributional records (Cleoptera: Staphylinidae). Psyche 92:49–55Google Scholar
  95. Thayer MK (2005) Staphylinidae. In: Kristensen NP, Beutel RG, Leschen R (eds) Handbook of zoology. vol IV. De Gruyter, Berlin, 40ppGoogle Scholar
  96. Topp W (1971) Zur Biologie und Larvalmorphologie von Atheta sordida Marsh. Ann Ent Fenn 37:85–89Google Scholar
  97. Topp W (1975) Zur Besiedlung einer neu enstandenen Insel. Untersuchungen am Hohen Knechtsand. Zool Jb Syst 102:215–240Google Scholar
  98. Topp W (1977) Einfluss des Strukturmosaiks einer Agrarlandschaft auf die Ausbreitung der Staphyliniden (Col.) Pedobiologia 17:43–50Google Scholar
  99. Topp W, Ring RA (1988) Adaptations of Coleoptera to the marine environment. II. Observations on rove beetles (Staphylinidae) from rocky shores. Can J Zool 66:2469–2474Google Scholar
  100. Vickerman GP, Sunderland KD (1975) Arthropods in cereal crops: nocturnal activity, vertical distribution and aphid predation. J Appl Ecol 12:755–766Google Scholar
  101. Vogel J, Uhlig M (1982) Zur Staphylinidenfauna zweier Leipziger Stadtparks. Faun Abh Staatl Mus Tierk Dresden 9:195–204Google Scholar
  102. Walsh GC, Chani-Posse M (2003) Abundance and seasonal distribution of predatory coprophilous argentine rove beetles (Col., Staphyl.) and their effects on dung breeding flies. Coleopt Bull 57:43–50Google Scholar
  103. Weidel H (2010) Das Aeroplankton in der Norddeutschen Tiefebene über Schleswig-Holstein. Faun-Ökol Mitt 9:111–129Google Scholar
  104. Weigmann G, Kratz W, Heck M et al (1989) Ballungsraumnahe Waldökosysteme. Teilprojekt 1.5 Bodenbiologische Dynamik immissionsbelasteter Forsten. UBA, BerlinGoogle Scholar
  105. Weinreich E (1968) Über den Klebfangapparat der Imagines von Stenus Latr. (Coleoptera, Staphylinidae) mit einem Beitrag zur Kenntnis der Jugendstadien dieser Gattung. Zeitschrift für Morphologie der Tiere 62:162–210Google Scholar
  106. Wildschut MA, Heessen HJL, Brunsting AMH (1981) Duration of the developmental stages and timing of the end of the reproductive season of Pterostichus oblongopunctatus (Fabricius) (Col., Carabidae) and Philonthus decorus (Gravenhorst) (Col., Staphylinidae). Neth J Zool 32:49–62Google Scholar
  107. Wright EJ, Müller P (1989) Laboratory studies of host finding, acceptance and suitability of the dung-breeding fly Haematobia thirouxi potans (Dipt. Muscidcae) by Aleochara species (Col. Staph.) Entomophaga 34:61–71Google Scholar
  108. Yamamotu S, Ikeda K, Kamitaini S (2014) Species diversity and community structure of rove beetles (Col., Staphyl.) attracted to dung of sika deer in coniferous forests of Southwest Japan. Entomol Sci 17:52–58Google Scholar
  109. Young OP (2011) Staphylinid predation on large dung beetles (Coleoptera: Staphylinidae, Scarabaeinae) in Panama. Coleopt Bull 65:227–229Google Scholar
  110. Zanetti A (2011) Contribution to the knowledge of Staphylinidae from southern Sardinia (Coleoptera). Conserv Habitat Invert 5:331–352Google Scholar
  111. Zerche L (2006) Monographie der paläarktischen Coryphiini. Suppl. 3: Revision der Gattung Ophthalmoniphetodes Zerche – tertiäre Relikte im Schnee (Coleoptera, Staphylinidae, Omaliinae). Nova Suppl Entomol 19:222Google Scholar

Copyright information

© Crown 2018

Authors and Affiliations

  1. 1.Department of Applied EcologyInstitute for Ecosystem Research, University of KielKielGermany
  2. 2.KielGermany

Personalised recommendations