A Review of the Fossil History of Staphylinoidea

Chapter

Abstract

The superfamily Staphylinoidea includes the families Hydraenidae, Ptiliidae, Agyrtidae, Leiodidae, Silphidae, and Staphylinidae and currently includes more than 400 described fossils. The geological history of the superfamily ranges from the Triassic to Cenozoic, and the lineage is well represented in multiple significant Lagerstätte. During the last several years, many new important fossils have been described, and for most Staphylinidae subfamilies, their geological history extends into the Cretaceous. I summarize the most important fossil discoveries for families and subfamilies from compressions/impressions and amber inclusions. I discuss the diversity of Staphylinoidea though time, and I provide a summary phylogeny of Staphylinoidea with fossil constraints, updated from previously published works. Additionally, I discuss the apparent bradytely in many lineages and possible future steps to expand our knowledge of fossil Staphylinoidea .

Notes

Acknowledgments

I am grateful to Alfred Newton for providing data from his unpublished database of Staphylinoidea used in Table 3.1, to the editors of this volume for allowing me to participate, and to Adam Brunke for reviewing a previous version of this chapter. I am also grateful to the curatorial staff at American Museum of Natural History, the Museum of Comparative Zoology, Harvard, and Smithsonian Institution for access to their specimens.

References

  1. Ballard JWO, Thayer MK, Newton AF et al (1998) Data sets, partitions, and characters: philosophies and procedures for analyzing multiple data sets. Syst Biol 47:367–396PubMedGoogle Scholar
  2. Brunke AJ, Chatzimanolis S, Schillhammer H et al (2016) Early evolution of the hyperdiverse rove beetle tribe Staphylinini (Coleoptera: Staphylinidae: Staphylininae) and a revision of its higher classification. Cladistics 32(4):427–451Google Scholar
  3. Brunke AJ, Schillhammer H, Chatzimanolis S (2017) The first fossil rove beetle from the middle Eocene Kishenehn Formation (North America) provides evidence for ancient Eocene relicts within the hyperdiverse Staphylinini (Coleoptera: Staphylinidae: Staphylininae). J Syst Paleontol 15(12):1015–1025.  https://doi.org/10.1080/14772019.2016.1266402CrossRefGoogle Scholar
  4. Cai CY, Huang DY (2010) Current knowledge on Jurassic staphylinids of China (Insecta, Coleoptera). Earth Sci Front 17:151–153Google Scholar
  5. Cai CY, Huang DY (2013a) Rove beetles roving in deep time: Chinese Mesozoic fossils tell a story (Coleoptera: Staphylinidae). In: Reitner J, Qun Y, Yongdong W, Reich M (eds) Paleobiology and geobiology of fossil Lagerstätten through earth history. Universitätsverlag Göttingen, Göttingen, pp 25–26Google Scholar
  6. Cai CY, Huang DY (2013b) Megolisthaerus, interpreted as staphylinine rove beetle (Coleoptera: Staphylinidae) based on new early Cretaceous material from China. Cretac Res 40:207–211Google Scholar
  7. Cai CY, Huang DY (2013c) A new species of small-eyed Quedius (Coleoptera: Staphylinidae: Staphylininae) from the early Cretaceous of China. Cretac Res 44:54–57Google Scholar
  8. Cai CY, Huang DY (2013d) Sinanthobium daohugouense, a tiny new omaliine rove beetle (Coleoptera: Staphylinidae) from the middle Jurassic of China. Can Entomol 145(5):496–500Google Scholar
  9. Cai CY, Huang DY (2014a) Diverse oxyporine rove beetles from the early Cretaceous of China (Coleoptera: Staphylinidae). Syst Entomol 39:500–505Google Scholar
  10. Cai CY, Huang DY (2014b) The oldest micropepline beetle from Cretaceous Burmese amber and its phylogenetic implications (Coleoptera: Staphylinidae). Naturwissenschaften 101(10):813–817PubMedGoogle Scholar
  11. Cai CY, Huang DY (2015a) The oldest aleocharine rove beetle (Coleoptera, Staphylinidae) in Cretaceous Burmese amber and its implications for the early evolution of the basal group of hyper-diverse Aleocharinae. Gondw Res 28:1579–1584Google Scholar
  12. Cai CY, Huang DY (2015b) The oldest osoriine rove beetle from Cretaceous Burmese amber (Coleoptera: Staphylinidae). Cretac Res 52:495–500Google Scholar
  13. Cai CY, Huang DY (2016) Cretoleptochromus archaicus gen. et sp. nov., a new genus of ant-like stone beetles in upper Cretaceous Burmese amber (Coleoptera, Staphylinidae, Scydmaeninae). Cretac Res 63:7–13Google Scholar
  14. Cai CY, Huang DY, Solodovnikov A (2011) A new species of Hesterniasca (Coleoptera: Staphylinidae: Tachyporinae) from the early Cretaceous of China with discussion of its systematic position. Insect Syst Evol 42:213–220Google Scholar
  15. Cai CY, Huang DY, Thayer MK, Newton AF (2012) Glypholomatine rove beetles (Coleoptera: Staphylinidae): a southern hemisphere recent group recorded from the middle Jurassic of China. J Kansas Entomol Soc 85(3):239–244Google Scholar
  16. Cai CY, Yan EV, Beattie R, Wang B, Huang DY (2013a) First rove beetles from the Jurassic Talbragar fish bed of Australia (Coleoptera, Staphylinidae). J Paleontol 87:650–656Google Scholar
  17. Cai CY, Yan EV, Vasilenko DV (2013b) First record of Sinoxytelus (Coleoptera: Staphylinidae) from the Urey locality of Transbaikalia, Russia, with discussion on its systematic position. Cretac Res 41:237–241Google Scholar
  18. Cai CY, Thayer MK, Engel MS et al (2014a) Early origin of parental care in Mesozoic carrionbeetles. Proc Natl Acad Sci USA 111:14170–14174PubMedPubMedCentralGoogle Scholar
  19. Cai CY, Clarke DJ, Huang DY et al (2014b) A new genus and species of Steninae from the late Eocene of France (Coleoptera, Staphylinidae). Alcheringa 38:557–562Google Scholar
  20. Cai CY, Huang DY, Newton AF et al (2014c) Mesapatetica aenigmatica, a new genus and species of rove beetles (Coleoptera, Staphylinidae) from the middle Jurassic of China. J Kansas Entomol Soc 87(2):219–224Google Scholar
  21. Cai CY, Newton AF, Huang DY et al (2014d) A new species of Platydracus Thomson, 1858 (Coleoptera, Staphylinidae, Staphylininae) from the upper Eocene Florissant beds, Colorado, USA. Palaeoworld 23:321–332Google Scholar
  22. Cai CY, Beattie R, Huang DY (2015) Jurassic olisthaerine rove beetles (Coleoptera: Staphylinidae): 165 million years of morphological and probably behavioral stasis. Gondw Res 28(1):425–431Google Scholar
  23. Cai C, Newton AF, Thayer MK et al (2016) Specialized proteinine rove beetles shed light on insect–fungal associations in the Cretaceous. Proc R Soc B 283:20161439PubMedPubMedCentralGoogle Scholar
  24. Caterino MS, Hunt T, Vogler AP (2005) On the constitution and phylogeny of Staphyliniformia (Insecta: Coleoptera). Mol Phylogenet Evol 34:655–672PubMedGoogle Scholar
  25. Chatzimanolis S, Engel MS (2010) Laasbium Scudder: a genus of tertiary earwigs, not rove beetles, and the classification of Florissant fossil Dermaptera (Insecta). Ann Zool 60(1):101–108Google Scholar
  26. Chatzimanolis S, Engel MS (2011) A new species of Diochus from Baltic amber (Coleoptera, Staphylinidae, Diochini). ZooKeys 138:65–73Google Scholar
  27. Chatzimanolis S, Engel MS (2013) The fauna of Staphylininae in Dominican amber (Coleoptera: Staphylinidae). Ann Carnegie Mus 81:281–294Google Scholar
  28. Chatzimanolis S, Grimaldi DA, Engel MS et al (2012) Leehermania prorova, the earliest staphyliniform beetle, from the Late Triassic of Virginia (Coleoptera: Staphylinidae). Amer Mus Novitates 3761:1–28Google Scholar
  29. Chatzimanolis S, Newton AF, Soriano C et al (2013) Remarkable stasis in a phloeocharine rove beetle from the late Cretaceous of New Jersey (Coleoptera: Staphylinidae). J Paleontol 7(2):177–182Google Scholar
  30. Clarke D, Chatzimanolis S (2009) Antiquity and long-term morphological stasis in a group of rove beetles (Coleoptera: Staphylinidae): description of the oldest Octavius species, from Cretaceous Burmese amber and review of the ‘Euaesthetine subgroup’ fossil record. Cretac Res 30(6):1426–1434Google Scholar
  31. Engel MS, Chatzimanolis S (2009) An oxyteline rove beetle in Dominican amber with possible African affinities (Coleoptera: Staphylinidae: Oxytelinae). Ann Carnegie Museum 77(4):425–429Google Scholar
  32. Fraser NC, Grimaldi DA, Olsen PE (1996) A Triassic Lagerstätte from eastern North America. Nature 380:615–619Google Scholar
  33. Gersdorf E (1976) Dritter Beitrag über Käfer (Coleoptera) aus dem Jungtertiär von Willershausen, Bl. Northeim 4226. Geol Jahrb Reihe A 36:103–145Google Scholar
  34. Giebel CG (1856) Die Insecten und Spinnen der Vorwelt mit steter Berücksichtigung der lebenden Insekten und Spinnen. Die Fauna der Vorwelt 2:1–511Google Scholar
  35. Grebennikov VV, Newton AF (2009) Good-bye Scydmaenidae, or why the ant-like stone beetles should become megadiverse Staphylinidae sensu latissimo (Coleoptera). Eur J Entomol 106:275–301Google Scholar
  36. Grebennikov VV, Newton AF (2012) Detecting the basal dichotomies in the monophylum of carrion and rove beetles (Insecta: Coleoptera: Silphidae and Staphylinidae) with emphasis on the oxyteline group of subfamilies. Arthropod Syst Phylogeny 70(3):133–165Google Scholar
  37. Greenwalt D, Labandeira C (2013) The amazing fossil insects of the Eocene Kishenehn Formation in northwestern Montana. Rocks Miner 88(5):434–441Google Scholar
  38. Greenwalt D, Rose TR, Chatzimanolis S (2016) Preservation of mandibular zinc in a beetle from the Eocene Kishenehn Formation of Montana, USA. Can J Earth Sci 53:614–621Google Scholar
  39. Gusarov VI (2000) Mesotachyporus puer, a new genus and species of Cretaceous Tachyporinae (Coleoptera: Staphylinidae) from New Jersey amber. In: Grimaldi D (ed) Studies on fossils in amber, with particular reference to the Cretaceous of New Jersey. Backhuys Publishers, Leiden, pp 255–258Google Scholar
  40. Hansen M (1997) Phylogeny and classification of the staphyliniform beetle families (Coleoptera). Biol Skr 48:1–339Google Scholar
  41. Heer O (1847) Die Insektenfauna der Tertiärgebilde von Oeningen und von Radoboj in Croatien. Verlag von Wilhelm Engelmann, LeipzigGoogle Scholar
  42. Heer O (1862) Beiträge zur Insektenfauna Oeningens: Coleoptera. Geoadephagen, Hydrocanthariden, Gyriniden, Brachelytren, Clavicornen Lamellicornen und Buprestiden. Natuurkundige Verhandelingen van de Hollandsche Maatschappij der Wetenschappen te Haarlem 16(2):1–90Google Scholar
  43. Heer O (1870) Die Miocene Flora und Fauna Spitzbergens. Kongliga Svenska Vetenskaps-Akademiens Handlingar 8(7):1–98Google Scholar
  44. Herman LH (1986) Revision of Bledius. Part IV. Classification of species groups, phylogeny, natural history, and catalogue (Coleoptera, Staphylinidae, Oxytelinae). Bull Am Mus Nat Hist 184:1–368Google Scholar
  45. Herman LH (2001) Catalog of the Staphylinidae (Insecta: Coleoptera). 1758 to the end of the second millennium. Bull Am Mus Nat Hist 265:1–4218Google Scholar
  46. Hong YC (1983) Middle jurassic fossil insects in north China. Geological Publishing House, BeijingGoogle Scholar
  47. Irmler U (2003) Osoriinae (Coleoptera: Staphylinidae) from Dominican amber. Stuttg Beitr Naturkunde B 342:1–16Google Scholar
  48. Jałoszyński P (2015) A new Eocene genus of ant-like stone beetles sheds new light on the evolution of Mastigini. J Paleontol 89(6):1056–1067Google Scholar
  49. Jałoszyński P (2016) Scydmaeninae leach, 1815. In: Beutel RG, Leschen RAB (eds) Coleoptea, beetles, Vol 1: Morphology and systematics (Archostemata, Adephaga, Myxophaga, Polyphaga partim), 2nd edn. De Gruyter, Berlin, pp 376–385Google Scholar
  50. Jałoszyński P, Peris D (2016) Cretaceous amber inclusions of Spain and Myanmar demonstrate early diversification and wide dispersal of Cephenniitae (Coleoptera: Staphylinidae: Scydmaeninae). Cretac Res 57:190–198Google Scholar
  51. Jałoszyński P, Perkovsky EE (2016) The extant genus Eutheia (Coleoptera: Staphylinidae: Scydmaeninae) discovered in upper Cretaceous Taimyr amber. Cretac Res 66:6–10Google Scholar
  52. Jałoszyński P, Brunke AJ, Metscher B et al (2017) Clidicostigus gen. nov., the first Mesozoic genus of Mastigini (Coleoptera: Staphylinidae: Scydmaeninae) from Cenomanian Burmese amber. Cretac Res 72:110–116Google Scholar
  53. Kirejtshuk AG, Chetverikov PE, Azar D et al (2016) Ptismidae fam. nov. (Coleoptera, Staphyliniformia) from the lower Cretaceous Lebanese amber. Cretac Res 59:201–213Google Scholar
  54. Lawrence JF, Newton AF (1982) Evolution and classification of beetles. Annu Rev Ecol Syst 13:261–290Google Scholar
  55. Lefebvre F, Vincent B, Azar D et al (2005) The oldest beetle of the Euaesthetinae (Staphylinidae) from early Cretaceous Lebanese amber. Cretac Res 26:207–211Google Scholar
  56. Lin QB (1976) The Jurassic fossil insects from western Liaoning. Acta Palaeontol Sin 15(1):97–116Google Scholar
  57. Lü L, Cai CY, Huang DY (2017) The earliest oxyteline rove beetle in amber and its systematic implications (Coleoptera: Staphylinidae: Oxytelinae). Cretac Res 69:169–177Google Scholar
  58. Matthews JV (1970) Two new species of Micropeplus from the Pliocene of western Alaska with remarks on the evolution of Micropeplinae (Coleoptera: Staphylinidae). Can J Zool 48:779–788Google Scholar
  59. Mckenna DD, Farrell BD, Caterino MS et al (2015) Phylogeny and evolution of Staphyliniformia and Scarabaeiformia: forest litter as a stepping stone for diversification of nonphytophagous beetles. Sys Entomol 40(1):35–60Google Scholar
  60. Misof B, Liu S, Meusemann S et al (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767PubMedGoogle Scholar
  61. Mitchell AA (2013) EDNA, the fossil insect database. https://fossilinsectdatabase.co.uk
  62. Newton AF (1985) South temperate Staphylinoidea (Coleoptera): their potential for biogeographic analysis of austral disjunctions. In: Ball GE (ed) Taxonomy, phylogeny, and zoogeography of beetles and ants: a volume dedicated to the memory of Philip Jackson Darlington, Jr. (1904–1983). Junk-Kluwer, Dordrecht, pp 180–220Google Scholar
  63. Newton AF (1997) Review of Agyrtidae (Coleoptera), with a new genus and species from New Zealand. Ann Zool 47(1/2):111–156Google Scholar
  64. Newton AF (2011) Phylogenie und Systematik. In: Assing A, Schülke M (eds) Die Käfer Mitteleuropas. Band 4. Staphylinidae (exklusive Aleocharinae, Pselaphinae und Scydmaeninae), vol 2. Spektrum Akademischer Verlag, Heidelberg, pp 1–4Google Scholar
  65. Newton AF (2016) Staphylinoidea Latreille, 1802. In: Beutel RG, Leschen RAB (eds) Coleoptea, beetles, Morphology and systematics (Archostemata, Adephaga, Myxophaga, Polyphaga partim), vol 1, 2nd edn. De Gruyter, Berlin, pp 315–316Google Scholar
  66. Newton AF, Thayer MK (1995) Protopselaphinae new subfamily for Protopselaphus new genus from Malaysia, with a phylogenetic analysis and review of the Omaliine Group of Staphylinidae including Pselaphidae (Coleoptera). In: Pakaluk J, Ślipiński SA (eds) Biology, phylogeny and classification of Coleoptera: papers celebrating the 80th birthday of Roy A. Crowson. Muzeum i Instytut Zoologii PAN, Warsaw, pp 219–320Google Scholar
  67. Ortega-Blanco J, Chatzimanolis S, Singh H et al (2013) The oldest fossil of the subfamily Osoriinae (Coleoptera: Staphylinidae), from Eocene Cambay amber (India). Coleopt Bull 67:304–308Google Scholar
  68. Oustalet E (1874) Recherches sur les insectes fossiles des terrains Tertiaires de la France, deuxième partie, insectes fossiles d’Aix en Provence. Ann Sci Geol 5(2):1–347Google Scholar
  69. Parker J (2016) Emergence of a superradiation: pselaphine rove beetles in Mid-Cretaceous amber from Myanmar and their evolutionary implications. Sys Entomol 41(3):541–566Google Scholar
  70. Parker J, Grimaldi DA (2014) Specialized myrmecophily at the ecological dawn of modern ants. Curr Biol 24:2428–2434PubMedGoogle Scholar
  71. Pasnik G, Kubisz D (2002) A new genus and new species of Staphylinidae (Coleoptera) from Baltic amber. Eur J Entomol 99:353–361Google Scholar
  72. Peris D, Chatzimanolis S, Delclòs X (2014a) Diversity of rove beetles (Coleoptera: Staphylinidae) in early Cretaceous Spanish amber. Cretac Res 48:85–95Google Scholar
  73. Peris D, Thayer MK, Néraudeau D (2014b) Oldest Omaliini (Coleoptera: Staphylinidae: Omaliinae) discovered in the opaque Cretaceous Amber of Charentes. Ann Entomol Soc Am 107(5):902–910Google Scholar
  74. Perkovsky EE (2000) The first find of leiodid tribe Scotocryptini (Coleoptera: Leiodidae: Leiodinae) in fossil resin (Dominican amber). Paleontol J 34(Suppl 3):S331–S332Google Scholar
  75. Perreau P (2012) Description of a new genus and two new species of Leiodidae (Coleoptera) from Baltic amber using phase contrast synchrotron X-ray microtomography. Zootaxa 3455:81–88Google Scholar
  76. Piton L (1940) Paléontologie du Gisement Éocéne de Menat. Flore et Faune, Puy-de-Dôme, pp 1–303Google Scholar
  77. Poinar G, Poinar R (1999) The amber forest: a reconstruction of a vanished world. Princeton University Press, PrincetonGoogle Scholar
  78. Ponomarenko AG (1977) Adephaga. In: Arnold LV, Zherikhin VV, Nikritin LM, Ponomarenko AG (eds) Mesozoic Coleoptera. Trudy Paleontologicheskogo Instituta Akademiya Nauk, Moscow, pp 17–104Google Scholar
  79. Ponomarenko AG (1980) Novye vidy zhukov mestonakhozhdeniya Manlay. Rannemelovoe Ozero Manlay, Sovmestnaya Sovetsko-Mongol’skaya Paleontologicheskaya Ekspeditsiya Trudy 13:52–56Google Scholar
  80. Ponomarenko AG (1985) Zhestkokrylye iz Yury Sibiri i zapadnoy Mongolii. In: Rasnitsyn AP (ed) Yurskie nasekomye Sibiri i Mongolii. Trudy Paleontologicheskogo Instituta Akademiya Nauk, Moscow, pp 47–87Google Scholar
  81. Puthz V (2008) Über Euaesthetinen aus dem Bernstein (Coleoptera, Staphylinidae). 99. Beitrag zur Kenntnis der Euasethetinen [sic]. Entomol Bl 103(104):59–62Google Scholar
  82. Puthz V (2010) Stenus Latreille, 1797 aus dem Baltischen Bernstein nebst Bemerkungen über andere fossile Stenus-Arten (Coleoptera, Staphylinidae). Entomol Bl 106:265–287Google Scholar
  83. Ruhfel BR, Bove CP, Philbrick CT et al (2016) Dispersal largely explains the Gondwanan distribution of the ancient tropical clusioid plant clade. Am J Bot 103(6):1117–1128PubMedGoogle Scholar
  84. Rust J, Singh H, Rana RS et al (2010) Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India. Proc Natl Acad Sci USA 107(43):18360–18365PubMedPubMedCentralGoogle Scholar
  85. Ryvkin AB (1985) Beetles of the family Staphylinidae from the Jurassic of Transbaikal [in Russian]. In: Rasnitsyn AP (ed) Jurassic insects of Siberia and Mongolia, vol 211. Trudy Paleontologicheskogo Instituta Akademiya Nauk SSSR, Moscow, pp 88–91Google Scholar
  86. Ryvkin AB (1988) New Cretaceous Staphylinidae (Insecta) from the far East. Paleontol J 22(4):100–104Google Scholar
  87. Ryvkin AB (1990) Family Staphylinidae Latreille, 1802. In: Trudy Paleontologicheskogo. Instituta Akademii Nauk SSSR, vol 239, pp 52–66Google Scholar
  88. Schaufuss LW (1890) System-schema der Pselaphiden, ein Blick in die Vorzeit, in die Gegenwart und in die Zukunft. Tijdschr Entomol 33:101–162Google Scholar
  89. Schlüter T (1978) Zur Systematik und Palökologie harzkonservierter Arthropoda einer Taphozönose aus dem Cenomanium von NW-Frankreich. Berliner Geowiss Abh A 9:1–150Google Scholar
  90. Schomann A, Solodovnikov AY (2012) A new genus of Staphylinidae (Coleoptera) from the lower Cretaceous: the first fossil rove beetles from the Southern Hemisphere. Syst Entomol 37:379–386Google Scholar
  91. Scudder SH (1876) Fossil Coleoptera from the Rocky mountain tertiaries. US Geol Surv Bull 2:77–87Google Scholar
  92. Scudder SH (1878) The fossil insects of the Green River shales. US Geol Surv Bull 4:747–776Google Scholar
  93. Scudder SH (1890) The tertiary insects of North America. Report of the United States geological survey of the territories, 13, pp 1–734Google Scholar
  94. Scudder SH (1900) Adephagous and clavicorn Coleoptera from the tertiary deposits at Florissant, Colorado with descriptions of a few other forms and a systematic list of the non-rhynchophorus tertiary Coleoptera of North America. Monogr US Geol Surv 40:1–148Google Scholar
  95. Shockley FW, Greenwalt D (2013) Ptenidium kishenehnicum (Coleoptera: Ptiliidae), a new fossil described from the Kishenehn oil shales, with a checklist of previously known fossil ptiliids. Proc Entomol Soc Wash 115(2):173–181Google Scholar
  96. Solodovnikov AY (2006) Revision and phylogenetic assessment of Afroquedius gen. nov. from South Africa: toward new concepts of the genus Quedius, subtribe Quediina and reclassification of the tribe Staphylinini (Coleoptera: Staphylinidae: Staphylininae). Ann Entomol Soc Am 99:1065–1084Google Scholar
  97. Solodovnikov AY, Yue Y, Tarasov S et al (2013) Extinct and extant rove beetles meet in the matrix: early Cretaceous fossils shed light on the evolution of a hyperdiverse insect lineage (Coleoptera: Staphylinidae: Staphylininae). Cladistics 29(4):360–403Google Scholar
  98. Thayer MK (2005) Staphylinidae. In: Beutel RG, Leschen RAB (eds) Handbook of zoology: Coleoptera, Evolution and systematics, Archostemata, Adephaga, Myxophaga, Staphyliniformia, Scarabaeiformia, Elateriformia, vol 1. De Gruyter, Berlin, pp 296–344Google Scholar
  99. Thayer MK (2016) Staphylinidae Latreille, 1802. In: Beutel RG, Leschen RAB (eds) Coleoptea, Beetles, Morphology and systematics (Archostemata, Adephaga, Myxophaga, Polyphaga partim), vol 1, 2nd edn. De Gruyter, Berlin, pp 394–442Google Scholar
  100. Thayer MK, Newton AF, Chatzimanolis S (2012) Prosolierius, a new mid-Cretaceous genus of Solieriinae (Coleoptera: Staphylinidae) with three new species from Burmese amber. Cretac Res 34:124–134Google Scholar
  101. Tikhomirova AL (1968) Staphylinid beetles from Jurassic of Karatau (Coleoptera: Staphylinidae). In: Rohdendorf BB (ed) Jurassic insects of Karatau. Akademiya Nauk SSSR, Moscow, pp 139–154Google Scholar
  102. Toussaint EFA, Seidel M, Arriaga-Varela E et al (2017) The peril of dating beetles. Sys Entomol 42(1):1–10Google Scholar
  103. Voje KL (2016) Tempo does not correlate with mode in the fossil record. Evolution 70(12):2678–2689PubMedGoogle Scholar
  104. von Heyden C, von Heyden L (1866) Käfer und Polypen aus der Braunkohle des Siebengebirges. Palaeontographica 15:131–156Google Scholar
  105. Weyenbergh H (1869) Sur les Insectes fossiles du Calcaire Lithographique de la Bavière, qui se trouvent au Musée Teyler. Arch Mus Teyler 2:1–48Google Scholar
  106. Wickham HF (1913a) Fossil Coleoptera from Florissant in the United States national museum. Proc US Nat Mus 45:283–303Google Scholar
  107. Wickham HF (1913b) Fossil Coleoptera from the Wilson Ranch near Florissant, Colorado. Bull Labs Nat His State Univ Iowa 6:3–29Google Scholar
  108. Yamamoto S (2016a) The oldest tachyporine rove beetle in amber (Coleoptera: Staphylinidae): a new genus and species from upper Cretaceous Burmese amber. Cretac Res 65:163–171Google Scholar
  109. Yamamoto S (2016b) The first fossil of dasycerine rove beetle (Coleoptera: Staphylinidae) from upper Cretaceous Burmese amber: phylogenetic implications for the Omaliine group subfamilies. Cretac Res 58:63–68Google Scholar
  110. Yamamoto S, Solodovnikov AY (2016) The first fossil Megalopsidiinae (Coleoptera: Staphylinidae) from upper Cretaceous Burmese amber and its potential for understanding basal relationships of rove beetles. Cretac Res 59:140–146Google Scholar
  111. Yamamoto S, Takahashi Y (2016) Coproporus electron sp. nov., the first tachyporine rove beetle in Dominican amber (Coleoptera, Staphylinidae). PalZ 90:629–635Google Scholar
  112. Yamamoto S, Maruyama M, Parker J (2016) Evidence for social parasitism of early insect societies by Cretaceous rove beetles. Nat Comm 7:1–9Google Scholar
  113. Yamamoto S, Takahashi Y, Parker J (2017) Evolutionary stasis in enigmatic jacobsoniid beetles. Gondwana Res 45:275–281Google Scholar
  114. Yue Y, Zhao Y, Ren D (2009) Glabrimycetoporus amoenus, a new tachyporine genus and species of Mesozoic Staphylinidae (Coleoptera) from Liaoning, China. Zootaxa 2225:63–68Google Scholar
  115. Yue Y, Zhao YY, Ren D (2010a) Three new mesozoic staphylinids (Coleoptera) from Liaoning, China. Cretac Res 31:61–70Google Scholar
  116. Yue Y, Ren D, Solodovnikov AY (2010b) Megolisthaerus chinensis gen. et sp. n. (Coleoptera: Staphylinidae incertae sedis): an enigmatic rove beetle lineage from the early Cretaceous. Insect Sys Evol 41:317–327Google Scholar
  117. Yue Y, Ren D, Solodovnikov AY (2011) The oldest fossil species of the rove beetle subfamily Oxyporinae (Coleoptera: Staphylinidae) from the early Cretaceous (Yixian Formation, China) and its phylogenetic significance. J Sys Palaeontol 9(4):467–471Google Scholar
  118. Yue Y, JJ G, Yang Q, Wang J et al (2016) The first fossil species of subfamily Piestinae (Coleoptera: Staphylinidae) from the lower Cretaceous of China. Cretac Res 63:63–67Google Scholar
  119. Zanetti A, Perreau M, Solodovnikov AY (2016) Two new fossil species of Omaliinae from Baltic amber (Coleoptera: Staphylinidae) and their significance for understanding the Eocene-Oligocene climate. Arthropod Syst Phylogeny 74:53–64Google Scholar
  120. Zhang JF (1988) The late Jurassic fossil Staphylinidae (Coleoptera) of China. Acta Entomol Sin 31:79–84Google Scholar
  121. Zhang JF (1989) Fossil insects from Shanwang, Shandong, China. Shandong Science and Technology Publishing House, JinanGoogle Scholar

Copyright information

© Crown 2018

Authors and Affiliations

  1. 1.Department of Biology, Geology and Environmental ScienceUniversity of Tennessee at ChattanoogaChattanoogaUSA

Personalised recommendations