Skip to main content

Dermatologic Side Effects of Systemic Targeted Anticancer Therapy

  • Chapter
  • First Online:
  • 1020 Accesses

Abstract

Skin, hair, and nails are almost always modified by systemic cancer therapies. These changes can sometimes result in severe adverse events, but most of the patients present with light and moderate skin side effects. Nevertheless, these dermatologic manifestations can significantly impact patients’ quality of life, especially in the case of new targeted agents that are sometimes prescribed continuously over long periods of time.

Patients have to be informed in advance about the skin symptoms that might occur during the course of their treatments. Preventive and symptomatic measures can be advised or prescribed that might optimize treatment compliance and improve quality of life.

Close interaction between oncologists and dermatologist is warranted in order to describe, characterize, and manage the numerous and sometimes new and original skin manifestations of new cancer therapies. In this chapter, we will focus on the side effects associated with targeted anticancer agents since oncologists and physicians are less informed about this field than they are about skin side effects of classical chemotherapeutic agents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Robert C, Soria J-C, Spatz A, Le Cesne A, Malka D, Pautier P, et al. Cutaneous side-effects of kinase inhibitors and blocking antibodies. Lancet Oncol. 2005;6(7):491–500.

    Article  PubMed  CAS  Google Scholar 

  2. Lacouture ME, Maitland ML, Segaert S, Setser A, Baran R, Fox LP, Epstein JB, Barasch A, Einhorn L, Wagner L, West DP, Rapoport BL, Kris MG, Basch E, Eaby B, Kurtin S, Olsen EA, Chen A, Dancey JE, Trotti A. A proposed EGFR inhibitor dermatologic adverse event-specific grading scale from the MASCC skin toxicity study group. Support Care Cancer. 2010;18:509–22. https://doi.org/10.1007/s00520-009-0744-x.

    Article  PubMed  Google Scholar 

  3. Agero ALC, Dusza SW, Benvenuto-Andrade C, Busam KJ, Myskowski P, Halpern AC. Dermatologic side effects associated with the epidermal growth factor receptor inhibitors. J Am Acad Dermatol. 2006;55(4):657–70.

    Article  PubMed  Google Scholar 

  4. Osio A, Mateus C, Soria J-C, Massard C, Malka D, Boige V, et al. Cutaneous side-effects in patients on long-term treatment with epidermal growth factor receptor inhibitors. Br J Dermatol. 2009;161(3):515–21.

    Article  PubMed  CAS  Google Scholar 

  5. Laux I, Jain A, Singh S, Agus DB. Epidermal growth factor receptor dimerization status determines skin toxicity to HER-kinase targeted therapies. Br J Cancer. 2006;94(1):85–92.

    Article  PubMed  CAS  Google Scholar 

  6. Lacouture ME. Mechanisms of cutaneous toxicities to EGFR inhibitors. Nat Rev Cancer. 2006;6(10):803–12.

    Article  PubMed  CAS  Google Scholar 

  7. Surguladze D, Deevi D, Claros N, Corcoran E, Wang S, Plym MJ, et al. Tumor necrosis factor-alpha and interleukin-1 antagonists alleviate inflammatory skin changes associated with epidermal growth factor receptor antibody therapy in mice. Cancer Res. 2009;69(14):5643–7.

    Article  PubMed  CAS  Google Scholar 

  8. Pérez-Soler R. Can rash associated with HER1/EGFR inhibition be used as a marker of treatment outcome? Oncology (Williston Park). 2003;17(11 Suppl 12):23–8.

    Google Scholar 

  9. Amador ML, Oppenheimer D, Perea S, Maitra A, Cusatis G, Cusati G, et al. An epidermal growth factor receptor intron 1 polymorphism mediates response to epidermal growth factor receptor inhibitors. Cancer Res. 2004;64(24):9139–43.

    Article  PubMed  CAS  Google Scholar 

  10. Lacouture ME. Insights into the pathophysiology and management of dermatologic toxicities to EGFR-targeted therapies in colorectal cancer. Cancer Nurs. 2007;30(4 Suppl 1):S17–26.

    Article  PubMed  Google Scholar 

  11. Janus N, Launay-Vacher V, Robert C, Souquet P-J, Mateus C, Dreno B, et al. Description of erlotinib-related skin effects management in France. Results of the PRECEDE study. Cancer Radiother. 2009;13(2):97–102.

    Article  PubMed  CAS  Google Scholar 

  12. Akman A, Yilmaz E, Mutlu H, Ozdogan M. Complete remission of psoriasis following bevacizumab therapy for colon cancer. Clin Exp Dermatol. 2009;34(5):e202–4.

    Article  PubMed  CAS  Google Scholar 

  13. Lacouture ME, Anadkat MJ, Bensadoun R-J, Bryce J, Chan A, Epstein JB, Eaby-Sandy B, Murphy BA, MASCC Skin Toxicity Study Group. Clinical practice guidelines for the prevention and treatment of EGFR inhibitor-associated dermatologic toxicities. Support Care Cancer. 2011;19:1079–95. https://doi.org/10.1007/s00520-011-1197-6.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jacot W, Bessis D, Jorda E, Ychou M, Fabbro M, Pujol J-L, et al. Acneiform eruption induced by epidermal growth factor receptor inhibitors in patients with solid tumours. Br J Dermatol. 2004;151(1):238–41.

    Article  PubMed  CAS  Google Scholar 

  15. Scope A, Agero ALC, Dusza SW, Myskowski PL, Lieb JA, Saltz L, et al. Randomized double-blind trial of prophylactic oral minocycline and topical tazarotene for cetuximab-associated acne-like eruption. J Clin Oncol. 2007;25(34):5390–6.

    Article  PubMed  CAS  Google Scholar 

  16. Jatoi A, Rowland K, Sloan JA, Gross HM, Fishkin PA, Kahanic SP, et al. Tetracycline to prevent epidermal growth factor receptor inhibitor-induced skin rashes: results of a placebo-controlled trial from the North Central Cancer Treatment Group (N03CB). Cancer. 2008;113(4):847–53.

    Article  PubMed  CAS  Google Scholar 

  17. Lacouture ME. The growing importance of skin toxicity in EGFR inhibitor therapy. Oncology (Williston Park). 2009;23(2):194–6.

    Google Scholar 

  18. Kerob D, Dupuy A, Reygagne P, Levy A, Morel P, Bernard BA, et al. Facial hypertrichosis induced by Cetuximab, an anti-EGFR monoclonal antibody. Arch Dermatol. 2006;142(12):1656–7.

    Article  PubMed  Google Scholar 

  19. Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer. 2008;8(8):579–91.

    Article  PubMed  CAS  Google Scholar 

  20. Breccia M, Carmosino I, Russo E, Morano SG, Latagliata R, Alimena G. Early and tardive skin adverse events in chronic myeloid leukaemia patients treated with imatinib. Eur J Haematol. 2005;74(2):121–3.

    Article  PubMed  CAS  Google Scholar 

  21. Valeyrie L, Bastuji-Garin S, Revuz J, Bachot N, Wechsler J, Berthaud P, et al. Adverse cutaneous reactions to imatinib (STI571) in Philadelphia chromosome-positive leukemias: a prospective study of 54 patients. J Am Acad Dermatol. 2003;48(2):201–6.

    Article  PubMed  Google Scholar 

  22. Basso FG, Boer CC, Corrêa MEP, Torrezan M, Cintra ML, de Magalhães MHCG, et al. Skin and oral lesions associated to imatinib mesylate therapy. Support Care Cancer. 2009;17(4):465–8.

    Article  PubMed  Google Scholar 

  23. Brouard M, Saurat JH. Cutaneous reactions to STI571. N Engl J Med. 2001;345(8):618–9.

    Article  PubMed  CAS  Google Scholar 

  24. Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C, et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med. 2002;346(9):645–52.

    Article  PubMed  CAS  Google Scholar 

  25. Deininger MWN, O’Brien SG, Ford JM, Druker BJ. Practical management of patients with chronic myeloid leukemia receiving imatinib. J Clin Oncol. 2003;21(8):1637–47.

    Article  PubMed  CAS  Google Scholar 

  26. Scheinfeld N. Imatinib mesylate and dermatology part 2: a review of the cutaneous side effects of imatinib mesylate. J Drugs Dermatol. 2006;5(3):228–31.

    PubMed  Google Scholar 

  27. Hensley ML, Ford JM. Imatinib treatment: specific issues related to safety, fertility, and pregnancy. Semin Hematol. 2003;40(2 Suppl 2):21–5.

    Article  PubMed  CAS  Google Scholar 

  28. Hsiao L-T, Chung H-M, Lin J-T, Chiou T-J, Liu J-H, Fan FS, et al. Stevens-Johnson syndrome after treatment with STI571: a case report. Br J Haematol. 2002;117(3):620–2.

    Article  PubMed  Google Scholar 

  29. Severino G, Chillotti C, De Lisa R, Del Zompo M, Ardau R. Adverse reactions during imatinib and lansoprazole treatment in gastrointestinal stromal tumors. Ann Pharmacother. 2005;39(1):162–4.

    Article  PubMed  Google Scholar 

  30. Vidal D, Puig L, Sureda A, Alomar A. Sti571-induced Stevens-Johnson syndrome. Br J Haematol. 2002;119(1):274–5.

    Article  PubMed  CAS  Google Scholar 

  31. Pavithran K, Thomas M. Imatinib induced Stevens-Johnson syndrome: lack of recurrence following re-challenge with a lower dose. Indian J Dermatol Venereol Leprol. 2005;71(4):288–9.

    Article  PubMed  Google Scholar 

  32. Sanchez-Gonzalez B, Pascual-Ramirez JC, Fernandez-Abellan P, Belinchon-Romero I, Rivas C, Vegara-Aguilera G. Severe skin reaction to imatinib in a case of Philadelphia-positive acute lymphoblastic leukemia. Blood. 2003;101(6):2446.

    Article  PubMed  CAS  Google Scholar 

  33. Mahapatra M, Mishra P, Kumar R. Imatinib-induced Stevens-Johnson syndrome: recurrence after re-challenge with a lower dose. Ann Hematol. 2007;86(7):537–8.

    Article  PubMed  Google Scholar 

  34. Brouard MC, Prins C, Mach-Pascual S, Saurat JH. Acute generalized exanthematous pustulosis associated with STI571 in a patient with chronic myeloid leukemia. Dermatology. 2001;203(1):57–9.

    Article  PubMed  CAS  Google Scholar 

  35. Schwarz M, Kreuzer K-A, Baskaynak G, Dörken B, le Coutre P. Imatinib-induced acute generalized exanthematous pustulosis (AGEP) in two patients with chronic myeloid leukemia. Eur J Haematol. 2002;69(4):254–6.

    Article  PubMed  Google Scholar 

  36. Le Nouail P, Viseux V, Chaby G, Billet A, Denoeux JP, Lok C. Drug reaction with eosinophilia and systemic symptoms (DRESS) following imatinib therapy. Ann Dermatol Venereol. 2006;133(8–9 Pt 1):686–8.

    Article  PubMed  Google Scholar 

  37. Kantarjian H, Giles F, Wunderle L, Bhalla K, O’Brien S, Wassmann B, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med. 2006;354(24):2542–51.

    Article  PubMed  Google Scholar 

  38. Kantarjian HM, Giles F, Gattermann N, Bhalla K, Alimena G, Palandri F, et al. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood. 2007;110(10):3540–6.

    Article  PubMed  CAS  Google Scholar 

  39. Woo SM, Huh CH, Park KC, Youn SW. Exacerbation of psoriasis in a chronic myelogenous leukemia patient treated with imatinib. J Dermatol. 2007;34(10):724–6.

    Article  PubMed  Google Scholar 

  40. Brazzelli V, Prestinari F, Roveda E, Barbagallo T, Bellani E, Vassallo C, et al. Pityriasis rosea-like eruption during treatment with imatinib mesylate: description of 3 cases. J Am Acad Dermatol. 2005;53(5 Suppl 1):S240–3.

    Article  PubMed  Google Scholar 

  41. Konstantopoulos K, Papadogianni A, Dimopoulou M, Kourelis C, Meletis J. Pityriasis rosea associated with imatinib (STI571, Gleevec). Dermatology. 2002;205(2):172–3.

    Article  PubMed  CAS  Google Scholar 

  42. Deguchi N, Kawamura T, Shimizu A, Kitamura R, Yanagi M, Shibagaki N, et al. Imatinib mesylate causes palmoplantar hyperkeratosis and nail dystrophy in three patients with chronic myeloid leukemia. Br J Dermatol. 2006;154(6):1216–8.

    PubMed  CAS  Google Scholar 

  43. Kuraishi N, Nagai Y, Hasegawa M, Ishikawa O. Lichenoid drug eruption with palmoplantar hyperkeratosis due to imatinib mesylate: a case report and a review of the literature. Acta Derm Venereol. 2010;90(1):73–6.

    Article  PubMed  CAS  Google Scholar 

  44. Gómez Fernández C, Sendagorta Cudós E, Casado Verrier B, Feito Rodríguez M, Suárez Aguado J, Vidaurrázaga Díazde Arcaya C. Oral lichenoid eruption associated with imatinib treatment. Eur J Dermatol. 2010;20(1):127–8.

    PubMed  Google Scholar 

  45. Kawakami T, Kawanabe T, Soma Y. Cutaneous lichenoid eruption caused by imatinib mesylate in a Japanese patient with chronic myeloid leukaemia. Acta Derm Venereol. 2009;89(3):325–6.

    Article  PubMed  Google Scholar 

  46. Sendagorta E, Herranz P, Feito M, Ramírez P, Feltes R, Floristán U, et al. Lichenoid drug eruption related to imatinib: report of a new case and review of the literature. Clin Exp Dermatol. 2009;34(7):e315–6.

    Article  PubMed  CAS  Google Scholar 

  47. Dalmau J, Peramiquel L, Puig L, Fernández-Figueras MT, Roé E, Alomar A. Imatinib-associated lichenoid eruption: acitretin treatment allows maintained antineoplastic effect. Br J Dermatol. 2006;154(6):1213–6.

    Article  PubMed  CAS  Google Scholar 

  48. Prabhash K, Doval DC. Lichenoid eruption due to imatinib. Indian J Dermatol Venereol Leprol. 2005;71(4):287–8.

    Article  PubMed  CAS  Google Scholar 

  49. Ena P, Chiarolini F, Siddi GM, Cossu A. Oral lichenoid eruption secondary to imatinib (Glivec). J Dermatolog Treat. 2004;15(4):253–5.

    Article  PubMed  CAS  Google Scholar 

  50. Arora B, Kumar L, Sharma A, Wadhwa J, Kochupillai V. Pigmentary changes in chronic myeloid leukemia patients treated with imatinib mesylate. Ann Oncol. 2004;15(2):358–9.

    Article  PubMed  CAS  Google Scholar 

  51. Tsao AS, Kantarjian H, Cortes J, O’Brien S, Talpaz M. Imatinib mesylate causes hypopigmentation in the skin. Cancer. 2003;98(11):2483–7.

    Article  PubMed  Google Scholar 

  52. Etienne G, Cony-Makhoul P, Mahon F-X. Imatinib mesylate and gray hair. N Engl J Med. 2002;347(6):446.

    Article  PubMed  Google Scholar 

  53. Mcpherson T, Sherman V, Turner R. Imatinib-associated hyperpigmentation, a side effect that should be recognized. J Eur Acad Dermatol Venereol. 2009;23(1):82–3.

    Article  PubMed  CAS  Google Scholar 

  54. Dippel E, Haas N, Grabbe J, Schadendorf D, Hamann K, Czarnetzki BM. Expression of the c-kit receptor in hypomelanosis: a comparative study between piebaldism, naevus depigmentosus and vitiligo. Br J Dermatol. 1995;132(2):182–9.

    Article  PubMed  CAS  Google Scholar 

  55. Cario-André M, Ardilouze L, Pain C, Gauthier Y, Mahon F-X, Taieb A. Imatinib mesilate inhibits melanogenesis in vitro. Br J Dermatol. 2006;155(2):493–4.

    Article  PubMed  Google Scholar 

  56. Hamm M, Touraud JP, Mannone L, Klisnick J, Ponnelle T, Lambert D. Imatinib-induced purpuric vasculitis. Ann Dermatol Venereol. 2003;130(8–9 Pt 1):765–7.

    PubMed  CAS  Google Scholar 

  57. Clark SH, Duvic M, Prieto VG, Prietol VG. Mycosis fungoides-like reaction in a patient treated with Gleevec. J Cutan Pathol. 2003;30(4):279–81.

    Article  PubMed  Google Scholar 

  58. Rousselot P, Larghero J, Raffoux E, Calvo F, Tulliez M, Giraudier S, et al. Photosensitization in chronic myelogenous leukaemia patients treated with imatinib mesylate. Br J Haematol. 2003;120(6):1091–2.

    Article  PubMed  Google Scholar 

  59. Talpaz M, Shah NP, Kantarjian H, Donato N, Nicoll J, Paquette R, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med. 2006;354(24):2531–41.

    Article  PubMed  CAS  Google Scholar 

  60. Hochhaus A, Kantarjian HM, Baccarani M, Lipton JH, Apperley JF, Druker BJ, et al. Dasatinib induces notable hematologic and cytogenetic responses in chronic-phase chronic myeloid leukemia after failure of imatinib therapy. Blood. 2007;109(6):2303–9.

    Article  PubMed  CAS  Google Scholar 

  61. Robert C. Cutaneous side effects of antiangiogenic agents. Bull Cancer. 2007;94 Spec No:S260–4.

    Google Scholar 

  62. Robert C, Mateus C, Spatz A, Wechsler J, Escudier B. Dermatologic symptoms associated with the multikinase inhibitor sorafenib. J Am Acad Dermatol. 2009;60(2):299–305.

    Article  PubMed  Google Scholar 

  63. Abou-Alfa GK, Schwartz L, Ricci S, Amadori D, Santoro A, Figer A, et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2006;24(26):4293–300.

    Article  PubMed  CAS  Google Scholar 

  64. Blumenschein GR Jr, Gatzemeier U, Fossella F, Stewart DJ, Cupit L, Cihon F, et al. Phase II, multicenter, uncontrolled trial of single-agent sorafenib in patients with relapsed or refractory, advanced non-small-cell lung cancer. J Clin Oncol. 2009;27(26):4274–80.

    Article  PubMed  CAS  Google Scholar 

  65. Cheng A-L, Kang Y-K, Chen Z, Tsao C-J, Qin S, Kim JS, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  66. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Staehler M, et al. Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J Clin Oncol. 2009;27(20):3312–8.

    Article  PubMed  CAS  Google Scholar 

  67. Llovet JM, Di Bisceglie AM, Bruix J, Kramer BS, Lencioni R, Zhu AX, et al. Design and endpoints of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst. 2008;100(10):698–711.

    Article  PubMed  Google Scholar 

  68. Ratain MJ, Eisen T, Stadler WM, Flaherty KT, Kaye SB, Rosner GL, et al. Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2006;24(16):2505–12.

    Article  PubMed  CAS  Google Scholar 

  69. Ryan CW, Goldman BH, Lara PN Jr, Mack PC, Beer TM, Tangen CM, et al. Sorafenib with interferon alfa-2b as first-line treatment of advanced renal carcinoma: a phase II study of the Southwest Oncology Group. J Clin Oncol. 2007;25(22):3296–301.

    Article  PubMed  CAS  Google Scholar 

  70. Demetri GD, van Oosterom AT, Garrett CR, Blackstein ME, Shah MH, Verweij J, et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet. 2006;368(9544):1329–38.

    Article  PubMed  CAS  Google Scholar 

  71. Gore ME, Szczylik C, Porta C, Bracarda S, Bjarnason GA, Oudard S, et al. Safety and efficacy of sunitinib for metastatic renal-cell carcinoma: an expanded-access trial. Lancet Oncol. 2009;10(8):757–63.

    Article  PubMed  CAS  Google Scholar 

  72. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356(2):115–24.

    Article  PubMed  CAS  Google Scholar 

  73. Hurwitz HI, Dowlati A, Saini S, Savage S, Suttle AB, Gibson DM, et al. Phase I trial of pazopanib in patients with advanced cancer. Clin Cancer Res. 2009;15(12):4220–7.

    Article  PubMed  CAS  Google Scholar 

  74. Sternberg CN, Davis ID, Mardiak J, Szczylik C, Lee E, Wagstaff J, et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol. 2010;28(6):1061–8.

    Article  PubMed  CAS  Google Scholar 

  75. Hutson TE, Davis ID, Machiels J-PH, De Souza PL, Rottey S, Hong B-F, et al. Efficacy and safety of pazopanib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2010;28(3):475–80.

    Article  PubMed  CAS  Google Scholar 

  76. Susser WS, Whitaker-Worth DL, Grant-Kels JM. Mucocutaneous reactions to chemotherapy. J Am Acad Dermatol. 1999;40(3):367–98. quiz 399–400.

    Article  PubMed  CAS  Google Scholar 

  77. von Moos R, Thuerlimann BJK, Aapro M, Rayson D, Harrold K, Sehouli J, et al. Pegylated liposomal doxorubicin-associated hand-foot syndrome: recommendations of an international panel of experts. Eur J Cancer. 2008;44(6):781–90.

    Article  CAS  Google Scholar 

  78. Webster-Gandy JD, How C, Harrold K. Palmar-plantar erythrodysesthesia (PPE): a literature review with commentary on experience in a cancer centre. Eur J Oncol Nurs. 2007;11(3):238–46.

    Article  PubMed  Google Scholar 

  79. Autier J, Escudier B, Wechsler J, Spatz A, Robert C. Prospective study of the cutaneous adverse effects of sorafenib, a novel multikinase inhibitor. Arch Dermatol. 2008;144(7):886–92.

    Article  PubMed  CAS  Google Scholar 

  80. Lipworth AD, Robert C, Zhu AX. Hand-foot syndrome (hand-foot skin reaction, palmar-plantar erythrodysesthesia): focus on sorafenib and sunitinib. Oncology. 2009;77(5):257–71.

    Article  PubMed  CAS  Google Scholar 

  81. Autier J, Mateus C, Wechsler J, Spatz A, Robert C. Cutaneous side effects of sorafenib and sunitinib. Ann Dermatol Venereol. 2008;135(2):148–53. quiz 147, 154.

    Article  PubMed  CAS  Google Scholar 

  82. Sibaud V, Dalenc F, Chevreau C, Roché H, Delord J-P, Mourey L, Lacaze J-L, Rahhali N, Taïeb C. HFS-14, a specific quality of life scale developed for patients suffering from hand-foot syndrome. Oncologist. 2011;16:1469–78. https://doi.org/10.1634/theoncologist.2011-0033.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lacouture ME, Reilly LM, Gerami P, Guitart J. Hand foot skin reaction in cancer patients treated with the multikinase inhibitors sorafenib and sunitinib. Ann Oncol. 2008;19(11):1955–61.

    Article  PubMed  CAS  Google Scholar 

  84. Yang C-H, Lin W-C, Chuang C-K, Chang Y-C, Pang S-T, Lin Y-C, et al. Hand-foot skin reaction in patients treated with sorafenib: a clinicopathological study of cutaneous manifestations due to multitargeted kinase inhibitor therapy. Br J Dermatol. 2008;158(3):592–6.

    Article  PubMed  CAS  Google Scholar 

  85. Lacouture ME, Wu S, Robert C, Atkins MB, Kong HH, Guitart J, et al. Evolving strategies for the management of hand-foot skin reaction associated with the multitargeted kinase inhibitors sorafenib and sunitinib. Oncologist. 2008;13(9):1001–11.

    Article  PubMed  CAS  Google Scholar 

  86. Giacchero D, Ramacciotti C, Arnault JP, Brassard M, Baudin E, Maksimovic L, Mateus C, Tomasic G, Wechsler J, Schlumberger M, Robert C. A new spectrum of skin toxic effects associated with the multikinase inhibitor vandetanib. Arch Dermatol. 2012;148:1418–20. https://doi.org/10.1001/2013.jamadermatol.192.

    Article  PubMed  Google Scholar 

  87. Robert C, Faivre S, Raymond E, Armand J-P, Escudier B. Subungual splinter hemorrhages: a clinical window to inhibition of vascular endothelial growth factor receptors? Ann Intern Med. 2005;143(4):313–4.

    Article  PubMed  Google Scholar 

  88. Lee WJ, Lee JL, Chang SE, Lee MW, Kang YK, Choi JH, et al. Cutaneous adverse effects in patients treated with the multitargeted kinase inhibitors sorafenib and sunitinib. Br J Dermatol. 2009;161(5):1045–51.

    Article  PubMed  CAS  Google Scholar 

  89. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Oudard S, et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol. 2009;27(22):3584–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Kong HH, Turner ML. Array of cutaneous adverse effects associated with sorafenib. J Am Acad Dermatol. 2009;61(2):360–1.

    Article  PubMed  PubMed Central  Google Scholar 

  91. MacGregor JL, Silvers DN, Grossman ME, Sherman WH. Sorafenib-induced erythema multiforme. J Am Acad Dermatol. 2007;56(3):527–8.

    Article  PubMed  Google Scholar 

  92. Kong HH, Sibaud V, Chanco Turner ML, Fojo T, Hornyak TJ, Chevreau C. Sorafenib-induced eruptive melanocytic lesions. Arch Dermatol. 2008;144(6):820–2.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Rosenbaum SE, Wu S, Newman MA, West DP, Kuzel T, Lacouture ME. Dermatological reactions to the multitargeted tyrosine kinase inhibitor sunitinib. Support Care Cancer. 2008;16(6):557–66.

    Article  PubMed  CAS  Google Scholar 

  94. Robert C, Spatz A, Faivre S, Armand J-P, Raymond E. Tyrosine kinase inhibition and grey hair. Lancet. 2003;361(9362):1056.

    Article  PubMed  Google Scholar 

  95. Hartmann JT, Kanz L. Sunitinib and periodic hair depigmentation due to temporary c-KIT inhibition. Arch Dermatol. 2008;144(11):1525–6.

    Article  PubMed  Google Scholar 

  96. Billemont B, Barete S, Rixe O. Scrotal cutaneous side effects of sunitinib. N Engl J Med. 2008;359(9):975–6. discussion 976.

    Article  PubMed  CAS  Google Scholar 

  97. Suwattee P, Chow S, Berg BC, Warshaw EM. Sunitinib: a cause of bullous palmoplantar erythrodysesthesia, periungual erythema, and mucositis. Arch Dermatol. 2008;144(1):123–5.

    Article  PubMed  Google Scholar 

  98. Guevremont C, Alasker A, Karakiewicz PI. Management of sorafenib, sunitinib, and temsirolimus toxicity in metastatic renal cell carcinoma. Curr Opin Support Palliat Care. 2009;3(3):170–9.

    Article  PubMed  Google Scholar 

  99. Bennani-Lahlou M, Mateus C, Escudier B, Massard C, Soria J-C, Spatz A, et al. Eruptive nevi associated with sorafenib treatment. Ann Dermatol Venereol. 2008;135(10):672–4.

    Article  PubMed  CAS  Google Scholar 

  100. Dhomen N, Reis-Filho JS, da Rocha Dias S, Hayward R, Savage K, Delmas V, et al. Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell. 2009;15(4):294–303.

    Article  PubMed  CAS  Google Scholar 

  101. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR. Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell. 2008;132(3):363–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Arnault JP, Wechsler J, Escudier B, Spatz A, Tomasic G, Sibaud V, et al. Keratoacanthomas and squamous cell carcinomas in patients receiving sorafenib. J Clin Oncol. 2009;27(23):e59–61.

    Article  PubMed  Google Scholar 

  103. Kwon EJ, Kish LS, Jaworsky C. The histologic spectrum of epithelial neoplasms induced by sorafenib. J Am Acad Dermatol. 2009;61(3):522–7.

    Article  PubMed  CAS  Google Scholar 

  104. Clausen OPF, Aass HCD, Beigi M, Purdie KJ, Proby CM, Brown VL, et al. Are keratoacanthomas variants of squamous cell carcinomas? A comparison of chromosomal aberrations by comparative genomic hybridization. J Invest Dermatol. 2006;126(10):2308–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Cribier B, Asch P, Grosshans E. Differentiating squamous cell carcinoma from keratoacanthoma using histopathological criteria. Is it possible? A study of 296 cases. Dermatology. 1999;199(3):208–12.

    Article  PubMed  CAS  Google Scholar 

  106. Hodak E, Jones RE, Ackerman AB. Solitary keratoacanthoma is a squamous-cell carcinoma: three examples with metastases. Am J Dermatopathol. 1993;15(4):332–42. discussion 343–52.

    Article  PubMed  CAS  Google Scholar 

  107. Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol. 1997;9(2):180–6.

    Article  PubMed  CAS  Google Scholar 

  108. Dhomen N, Marais R. BRAF signaling and targeted therapies in melanoma. Hematol Oncol Clin North Am. 2009;23(3):529–45. ix.

    Article  PubMed  Google Scholar 

  109. Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010;140(2):209–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Mateus C, Robert C. New drugs in oncology and skin toxicity. Rev Med Interne. 2009;30(5):401–10.

    Article  PubMed  CAS  Google Scholar 

  111. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature. 2010;464(7287):427–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Arnault J-P, Mateus C, Escudier B, Tomasic G, Wechsler J, Hollville E, et al. Skin tumors induced by sorafenib; paradoxical RAS-RAF pathway activation and oncogenic mutations of HRAS, TP53 and TGFBR1. Clin Cancer Res. 2012;18(1):263–72. Epub 2011 Nov 17. Available de: http://www.ncbi.nlm.nih.gov/pubmed/22096025. Cité 2011 Dec 18.

    Article  PubMed  CAS  Google Scholar 

  113. Robert C, Arnault J-P, Mateus C. RAF inhibition and induction of cutaneous squamous cell carcinoma. Curr Opin Oncol. 2011;23(2):177–82.

    Article  PubMed  CAS  Google Scholar 

  114. Long GV, Trefzer U, Davies MA, Kefford RF, Ascierto PA, Chapman PB, Puzanov I, Hauschild A, Robert C, Algazi A, Mortier L, Tawbi H, Wilhelm T, Zimmer L, Switzky J, Swann S, Martin A-M, Guckert M, Goodman V, Streit M, Kirkwood JM, Schadendorf D. Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): a multicentre, open-label, phase 2 trial. Lancet Oncol. 2012;13:1087–95. https://doi.org/10.1016/S1470-2045(12)70431-X.

    Article  PubMed  CAS  Google Scholar 

  115. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, Lichinitser M, Dummer R, Grange F, Mortier L, Chiarion-Sileni V, Drucis K, Krajsova I, Hauschild A, Lorigan P, Wolter P, Long GV, Flaherty K, Nathan P, Ribas A, Martin A-M, Sun P, Crist W, Legos J, Rubin SD, Little SM, Schadendorf D. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372:30–9. https://doi.org/10.1056/NEJMoa1412690.

    Article  PubMed  CAS  Google Scholar 

  116. Ellard SL, Clemons M, Gelmon KA, Norris B, Kennecke H, Chia S, et al. Randomized phase II study comparing two schedules of everolimus in patients with recurrent/metastatic breast cancer: NCIC Clinical Trials Group IND.163. J Clin Oncol. 2009;27(27):4536–41.

    Article  PubMed  CAS  Google Scholar 

  117. Chapman PB, Hauschild A, Robert C, Larkin J, Haanen JB, Ribas A, Hoog D. Updated overall survival (OS) results for BRIM-3, a phase III randomized, open-label, multicenter trial comparing BRAF inhibitor vemurafenib (vem) with dacarbazine (DTIC) in previously untreated patients with BRAFV600E-mutated melanoma. J Clin Oncol. 2012;30:Suppl.8502.abstract.

    Google Scholar 

  118. Hauschild A, Grob J-J, Demidov LV, Jouary T, Gutzmer R, Millward M, Rutkowski P, Blank CU, Miller WH Jr, Kaempgen E, Martín-Algarra S, Karaszewska B, Mauch C, Chiarion-Sileni V, Martin A-M, Swann S, Haney P, Mirakhur B, Guckert ME, Goodman V, Chapman PB. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380:358–65. https://doi.org/10.1016/S0140-6736(12)60868-X.

    Article  PubMed  CAS  Google Scholar 

  119. Boussemart L, Girault I, Malka-Mahieu H, Mateus C, Routier E, Rubington M, Kamsu-Kom N, Thomas M, Tomasic G, Agoussi S, Breckler M, Laporte M, Lacroix L, Eggermont AM, Cavalcanti A, Grange F, Adam J, Vagner S, Robert C. Secondary tumors arising in patients undergoing BRAF inhibitor therapy exhibit increased BRAF-CRAF heterodimerization. Cancer Res. 2016;76:1476–84. https://doi.org/10.1158/0008-5472.CAN-15-2900-T.

    Article  PubMed  CAS  Google Scholar 

  120. O’Donnell A, Faivre S, Burris HA 3rd, Rea D, Papadimitrakopoulou V, Shand N, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol. 2008;26(10):1588–95.

    Article  PubMed  CAS  Google Scholar 

  121. Boussemart L, Boivin C, Claveau J, Tao YG, Tomasic G, Routier E, Mateus C, Deutsch E, Robert C. Vemurafenib and Radiosensitization. JAMA Dermatol. 2013;149(7):855–7. https://doi.org/10.1001/jamadermatol.2013.4200.

    Article  PubMed  Google Scholar 

  122. Boussemart L, Routier E, Mateus C, Opletalova K, Sebille G, Kamsu-Kom N, Thomas M, Vagner S, Favre M, Tomasic G, Wechsler J, Lacroix L, Robert C. Prospective study of cutaneous side-effects associated with the BRAF inhibitor vemurafenib: a study of 42 patients. Ann Oncol. 2013;24:1691–7. https://doi.org/10.1093/annonc/mdt015.

    Article  PubMed  CAS  Google Scholar 

  123. Schad K, Baumann Conzett K, Zipser MC, Enderlin V, Kamarashev J, French LE, Dummer R. Mitogen-activated protein/extracellular signal-regulated kinase kinase inhibition results in biphasic alteration of epidermal homeostasis with keratinocytic apoptosis and pigmentation disorders. Clin Cancer Res. 2010;16:1058–64. https://doi.org/10.1158/1078-0432.CCR-09-1766.

    Article  PubMed  CAS  Google Scholar 

  124. Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, Garbe C, Jouary T, Hauschild A, Grob JJ, Chiarion Sileni V, Lebbe C, Mandalà M, Millward M, Arance A, Bondarenko I, Haanen JBAG, Hansson J, Utikal J, Ferraresi V, Kovalenko N, Mohr P, Probachai V, Schadendorf D, Nathan P, Robert C, Ribas A, DeMarini DJ, Irani JG, Casey M, Ouellet D, Martin A-M, Le N, Patel K, Flaherty K. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med. 2014;371:1877–88. https://doi.org/10.1056/NEJMoa1406037.

    Article  PubMed  CAS  Google Scholar 

  125. Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet. 2008;372(9637):449–56.

    Article  PubMed  CAS  Google Scholar 

  126. Tabernero J, Rojo F, Calvo E, Burris H, Judson I, Hazell K, et al. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol. 2008;26(10):1603–10.

    Article  PubMed  CAS  Google Scholar 

  127. Punt CJA, Boni J, Bruntsch U, Peters M, Thielert C. Phase I and pharmacokinetic study of CCI-779, a novel cytostatic cell-cycle inhibitor, in combination with 5-fluorouracil and leucovorin in patients with advanced solid tumors. Ann Oncol. 2003;14(6):931–7.

    Article  PubMed  CAS  Google Scholar 

  128. Raymond E, Alexandre J, Faivre S, Vera K, Materman E, Boni J, et al. Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer. J Clin Oncol. 2004;22(12):2336–47.

    Article  PubMed  CAS  Google Scholar 

  129. Bjelogrlić SK, Srdić T, Radulović S. Mammalian target of rapamycin is a promising target for novel therapeutic strategy against cancer. J BUON. 2006;11(3):267–76.

    PubMed  Google Scholar 

  130. Sehgal SN. Rapamune (RAPA, rapamycin, sirolimus): mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression. Clin Biochem. 1998;31(5):335–40.

    Article  PubMed  CAS  Google Scholar 

  131. Nguyen A, Hoang V, Laquer V, Kelly KM. Angiogenesis in cutaneous disease: part I. J Am Acad Dermatol. 2009;61(6):921–42. quiz 943–4.

    Article  PubMed  CAS  Google Scholar 

  132. Amato RJ, Jac J, Giessinger S, Saxena S, Willis JP. A phase 2 study with a daily regimen of the oral mTOR inhibitor RAD001 (everolimus) in patients with metastatic clear cell renal cell cancer. Cancer. 2009;115(11):2438–46.

    Article  PubMed  CAS  Google Scholar 

  133. Atkins MB, Hidalgo M, Stadler WM, Logan TF, Dutcher JP, Hudes GR, et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol. 2004;22(5):909–18.

    Article  PubMed  CAS  Google Scholar 

  134. Atkins MB, Yasothan U, Kirkpatrick P. Everolimus. Nat Rev Drug Discov. 2009;8(7):535–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Robert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Robert, C., Mateus, C., Eggermont, A.M.M. (2018). Dermatologic Side Effects of Systemic Targeted Anticancer Therapy. In: Dicato, M., Van Cutsem, E. (eds) Side Effects of Medical Cancer Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-70253-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70253-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70252-0

  • Online ISBN: 978-3-319-70253-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics