Skip to main content

Altitude

  • Chapter
  • First Online:
Sport and Physical Activity in the Heat

Abstract

While endurance athletes around the globe began training at altitude in earnest in conjunction with the 1968 Mexico City Olympic Games, studies from that era largely failed to conclusively show an advantage to training at altitude for the purposes of enhancing sea-level performance. However, recent studies have shown some evidence suggesting a potential cross-acclimation effect between different environmental conditions. This chapter will provide a description of the physiological changes that occur with altitude exposure, potential mechanisms for improved exercise performance in the heat, and considerations for implementation in a training program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chapman RF, Levine BD. The effects of hypo- and hyperbaria on performance. In: Exercise and sport science. Philadelphia: Lippincott Williams & Wilkins; 2000. p. 447–58.

    Google Scholar 

  2. Squires RW, Buskirk ER. Aerobic capacity during acute exposure to simulated altitude, 914 to 2286 meters. Med Sci Sports Exerc. 1982;14(1):36–40.

    Article  CAS  PubMed  Google Scholar 

  3. Dill DB, Adams WC. Maximal oxygen uptake at sea level and at 3,090-m altitude in high school champion runners. J Appl Physiol. 1971;30(6):854–9.

    Article  CAS  PubMed  Google Scholar 

  4. Levine BD, Stray-Gundersen J. Dose-response of altitude training: how much altitude is enough? Adv Exp Med Biol. 2006;588:233–47.

    Article  PubMed  Google Scholar 

  5. Wehrlin JP, Hallén J. Linear decrease in VO2max and performance with increasing altitude in endurance athletes. Eur J Appl Physiol. 2006;96(4):404–12.

    Article  PubMed  Google Scholar 

  6. Gore CJ, Hahn AG, Scroop GC, Watson DB, Norton KI, Wood RJ, et al. Increased arterial desaturation in trained cyclists during maximal exercise at 580 m altitude. J Appl Physiol (1985). 1996;80(6):2204–10.

    Article  CAS  Google Scholar 

  7. Lawler J, Powers SK, Thompson D. Linear relationship between VO2max and VO2max decrement during exposure to acute hypoxia. J Appl Physiol. 1988;64(4):1486–92.

    Article  CAS  PubMed  Google Scholar 

  8. Chapman RF, Emery M, Stager JM. Degree of arterial desaturation in normoxia influences VO2max decline in mild hypoxia. Med Sci Sports Exerc. 1999;31(5):658–63.

    Article  CAS  PubMed  Google Scholar 

  9. Chapman RF, Stager JM, Tanner DA, Stray-Gundersen J, Levine BD. Impairment of 3000-m run time at altitude is influenced by arterial oxyhemoglobin saturation. Med Sci Sports Exerc. 2011;43(9):1649–56.

    Article  CAS  PubMed  Google Scholar 

  10. Chapman RF, Laymon AS, Levine BD. Timing of arrival and pre-acclimatization strategies for the endurance athlete competing at moderate to high altitudes. High Alt Med Biol. 2013;14(4):319–24.

    Article  PubMed  Google Scholar 

  11. Chapman RF, Stray-Gundersen J, Levine BD. Individual variation in response to altitude training. J Appl Physiol (1985). 1998;85(4):1448–56.

    Article  CAS  Google Scholar 

  12. Chapman RF, Stray-Gundersen J, Levine BD. Epo production at altitude in elite endurance athletes is not associated with the sea level hypoxic ventilatory response. J Sci Med Sport. 2010;13(6):624–9.

    Article  PubMed  Google Scholar 

  13. Chapman RF, Karlsen T, Ge R-L, Stray-Gundersen J, Levine BD. Living altitude influences endurance exercise performance change over time at altitude. J Appl Physiol. 2016;120(10):1151–8.

    Article  PubMed  Google Scholar 

  14. Ge R-L, Witkowski S, Zhang Y, Alfrey C, Sivieri M, Karlsen T, et al. Determinants of erythropoietin release in response to short-term hypobaric hypoxia. J Appl Physiol (1985). 2002;92(6):2361–7.

    Article  CAS  Google Scholar 

  15. Jedlickova K, Stockton DW, Chen H, Stray-Gundersen J, Witkowski S, Ri-Li G, et al. Search for genetic determinants of individual variability of the erythropoietin response to high altitude. Blood Cells Mol Dis. 2003;31(2):175–82.

    Article  CAS  PubMed  Google Scholar 

  16. Eckardt KU, Boutellier U, Kurtz A, Schopen M, Koller EA, Bauer C. Rate of erythropoietin formation in humans in response to acute hypobaric hypoxia. J Appl Physiol (1985). 1989;66(4):1785–8.

    Article  CAS  Google Scholar 

  17. Chapman RF, Karlsen T, Resaland GK, Ge R-L, Harber MP, Witkowski S, et al. Defining the “dose” of altitude training: how high to live for optimal sea level performance enhancement. J Appl Physiol. 2014;116(6):595–603.

    Article  PubMed  Google Scholar 

  18. Bärtsch P, Dvorak J, Saltin B. Football at high altitude. Scand J Med Sci Sports. 2008;18(Suppl 1):iii–v.

    Article  PubMed  Google Scholar 

  19. Dempsey JA, Hanson PG, Henderson KS. Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. J Physiol. 1984;355:161–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Byrne-Quinn E, Weil JV, Sodal IE, Filley GF, Grover RF. Ventilatory control in the athlete. J Appl Physiol. 1971;30(1):91–8.

    Article  CAS  PubMed  Google Scholar 

  21. Scoggin CH, Doekel RD, Kryger MH, Zwillich CW, Weil JV. Familial aspects of decreased hypoxic drive in endurance athletes. J Appl Physiol. 1978;44(3):464–8.

    Article  CAS  PubMed  Google Scholar 

  22. Levine BD, Friedman DB, Engfred K, Hanel B, Kjaer M, Clifford PS, et al. The effect of normoxic or hypobaric hypoxic endurance training on the hypoxic ventilatory response. Med Sci Sports Exerc. 1992;24(7):769–75.

    Article  CAS  PubMed  Google Scholar 

  23. Townsend NE, Gore CJ, Hahn AG, McKenna MJ, Aughey RJ, Clark SA, et al. Living high-training low increases hypoxic ventilatory response of well-trained endurance athletes. J Appl Physiol. 2002;93(4):1498–505.

    Article  PubMed  Google Scholar 

  24. Aaron EA, Johnson BD, Seow CK, Dempsey JA. Oxygen cost of exercise hyperpnea: measurement. J Appl Physiol (1985). 1992;72(5):1810–7.

    Article  CAS  Google Scholar 

  25. Harms CA, Babcock MA, McClaran SR, Pegelow DF, Nickele GA, Nelson WB, et al. Respiratory muscle work compromises leg blood flow during maximal exercise. J Appl Physiol. 1997;82(5):1573–83.

    Article  CAS  PubMed  Google Scholar 

  26. Turner LA, Tecklenburg-Lund S, Chapman RF, Stager JM, Duke JW, Mickleborough TD. Inspiratory loading and limb locomotor and respiratory muscle deoxygenation during cycling exercise. Respir Physiol Neurobiol. 2013;185(3):506–14.

    Article  PubMed  Google Scholar 

  27. Harms CA, Wetter TJ, St Croix CM, Pegelow DF, Dempsey JA. Effects of respiratory muscle work on exercise performance. J Appl Physiol. 2000;89(1):131–8.

    Article  CAS  PubMed  Google Scholar 

  28. Wilhite DP, Mickleborough TD, Laymon AS, Chapman RF. Increases in \dot{V} O2max with “live high–train low” altitude training: role of ventilatory acclimatization. Eur J Appl Physiol. 2013;113(2):419–26.

    Article  PubMed  Google Scholar 

  29. Killian KJ, Campbell EJM. Dyspnea and exercise. Annu Rev Physiol. 1983;45(1):465–79.

    Article  CAS  PubMed  Google Scholar 

  30. Weavil JC, Duke JW, Stickford JL, Stager JM, Chapman RF, Mickleborough TD. Endurance exercise performance in acute hypoxia is influenced by expiratory flow limitation. Eur J Appl Physiol. 2015;115(8):1653–63.

    Article  PubMed  Google Scholar 

  31. Ferrus L, Commenges D, Gire J, Varene P. Respiratory water loss as a function of ventilatory or environmental factors. Respir Physiol. 1984;56(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  32. Jones RM, Terhaard C, Zullo J, Tenney SM. Mechanism of reduced water intake in rats at high altitude. Am J Physiol. 1981;240(3):R187–91.

    CAS  PubMed  Google Scholar 

  33. Westerterp-Plantenga MS, Westerterp KR, Rubbens M, Verwegen CRT, Richelet J-P, Gardette B. Appetite at “high altitude” [Operation Everest III (Comex-’97)]: a simulated ascent of Mount Everest. J Appl Physiol. 1999;87(1):391–9.

    Article  CAS  PubMed  Google Scholar 

  34. Ge R-L, Babb TG, Sivieri M, Resaland GK, Karlsen T, Stray-Gundersen J, et al. Urine acid-base compensation at simulated moderate altitude. High Alt Med Biol. 2006;7(1):64–71.

    Article  CAS  PubMed  Google Scholar 

  35. Staubli M, Rohner F, Kammer P, Ziegler W, Straub PW. Plasma volume and proteins in voluntary hyperventilation. J Appl Physiol. 1986;60(5):1549–53.

    Article  CAS  PubMed  Google Scholar 

  36. Steurer J, Schiesser D, Stey C, Vetter W, Elzi MV, Barras J-P, et al. Hyperventilation enhances transcapillary diffusion of sodium fluorescein. Int J Microcirc. 1996;16(5):266–70.

    Article  CAS  Google Scholar 

  37. Gledhill N, Beirne GJ, Dempsey JA. Renal response to short-term hypocapnia in man. Kidney Int. 1975;8(6):376–84.

    Article  CAS  PubMed  Google Scholar 

  38. Goldfarb-Rumyantzev AS, Alper SL. Short-term responses of the kidney to high altitude in mountain climbers. Nephrol Dial Transplant. 2014;29(3):497–506.

    Article  CAS  PubMed  Google Scholar 

  39. Hildebrandt W, Ottenbacher A, Schuster M, Swenson ER, Bärtsch P. Diuretic effect of hypoxia, hypocapnia, and hyperpnea in humans: relation to hormones and O2 chemosensitivity. J Appl Physiol. 2000;88(2):599–610.

    Article  CAS  PubMed  Google Scholar 

  40. Brezis M, Heyman SN, Epstein FH. Determinants of intrarenal oxygenation. II. Hemodynamic effects. Am J Physiol. 1994;267(6 Pt 2):F1063–8.

    CAS  PubMed  Google Scholar 

  41. Claybaugh JR, Hansen JE, Wozniak DB. Response of antidiuretic hormone to acute exposure to mild and severe hypoxia in man. J Endocrinol. 1978;77(2):157–60.

    Article  CAS  PubMed  Google Scholar 

  42. Terrados N, Jansson E, Sylven C, Kaijser L. Is hypoxia a stimulus for synthesis of oxidative enzymes and myoglobin? J Appl Physiol. 1990;68(6):2369–72.

    Article  CAS  PubMed  Google Scholar 

  43. Mizuno M, Juel C, Bro-Rasmussen T, Mygind E, Schibye B, Rasmussen B, et al. Limb skeletal muscle adaptation in athletes after training at altitude. J Appl Physiol. 1990;68(2):496–502.

    Article  CAS  PubMed  Google Scholar 

  44. Gore CJ, Hahn AG, Aughey RJ, Martin DT, Ashenden MJ, Clark SA, et al. Live high:train low increases muscle buffer capacity and submaximal cycling efficiency. Acta Physiol Scand. 2001;173(3):275–86.

    Article  CAS  PubMed  Google Scholar 

  45. Levine BD, Stray-Gundersen J. Point: positive effects of intermittent hypoxia (live high:train low) on exercise performance are mediated primarily by augmented red cell volume. J Appl Physiol. 2005;99(5):2053–5.

    Article  PubMed  Google Scholar 

  46. Robach P, Lundby C. Is live high–train low altitude training relevant for elite athletes with already high total hemoglobin mass? Scand J Med Sci Sports. 2012;22(3):303–5.

    Article  CAS  PubMed  Google Scholar 

  47. Wenger RH, Gassmann M. Oxygen(es) and the hypoxia-inducible factor-1. Biol Chem. 1997;378(7):609–16.

    CAS  PubMed  Google Scholar 

  48. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12(12):5447–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bauer C, Kurtz A. Oxygen sensing in the kidney and its relation to erythropoietin production. Annu Rev Physiol. 1989;51:845–56.

    Article  CAS  PubMed  Google Scholar 

  50. Hattangadi SM, Wong P, Zhang L, Flygare J, Lodish HF. From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood. 2011;118(24):6258–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stray-Gundersen J, Alexander C, Hochstein A, Levine B. Failure of red cell volume to increase to altitude exposure in iron deficient runners. Med Sci Sports Exerc. 1992;24(5):S90.

    Article  Google Scholar 

  52. Govus AD, Garvican-Lewis LA, Abbiss CR, Peeling P, Gore CJ. Pre-altitude serum ferritin levels and daily oral iron supplement dose mediate iron parameter and hemoglobin mass responses to altitude exposure. PLoS One. 2015;10(8):e0135120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Clark SA, Quod MJ, Clark MA, Martin DT, Saunders PU, Gore CJ. Time course of haemoglobin mass during 21 days live high:train low simulated altitude. Eur J Appl Physiol. 2009;106(3):399–406.

    Article  CAS  PubMed  Google Scholar 

  54. Scoon GSM, Hopkins WG, Mayhew S, Cotter JD. Effect of post-exercise sauna bathing on the endurance performance of competitive male runners. J Sci Med Sport. 2007;10(4):259–62.

    Article  PubMed  Google Scholar 

  55. Lorenzo S, Halliwill JR, Sawka MN, Minson CT. Heat acclimation improves exercise performance. J Appl Physiol. 2010;109(4):1140–7.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rusko HR. New aspects of altitude training. Am J Sports Med. 1996;24(6 Suppl):S48–52.

    CAS  PubMed  Google Scholar 

  57. Levine BD, Stray-Gundersen J. “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol. 1997;83(1):102–12.

    Article  CAS  PubMed  Google Scholar 

  58. Heled Y, Peled A, Yanovich R, Shargal E, Pilz-Burstein R, Epstein Y, et al. Heat acclimation and performance in hypoxic conditions. Aviat Space Environ Med. 2012;83(7):649–53.

    Article  PubMed  Google Scholar 

  59. Gibson OR, Turner G, Tuttle JA, Taylor L, Watt PW, Maxwell NS. Heat acclimation attenuates physiological strain and the HSP72, but not HSP90α, mRNA response to acute normobaric hypoxia. J Appl Physiol. 2015;119(8):889–99.

    Article  CAS  PubMed  Google Scholar 

  60. Sawka MN, Dennis RC, Gonzalez RR, Young AJ, Muza SR, Martin JW, et al. Influence of polycythemia on blood volume and thermoregulation during exercise-heat stress. J Appl Physiol. 1987;62(3):912–8.

    Article  CAS  PubMed  Google Scholar 

  61. Patterson MJ, Cotter JD, Taylor NA. Thermal tolerance following artificially induced polycythaemia. Eur J Appl Physiol. 1995;71(5):416–23.

    Article  CAS  Google Scholar 

  62. Takeno Y, Kamijo Y-I, Nose H. Thermoregulatory and aerobic changes after endurance training in a hypobaric hypoxic and warm environment. J Appl Physiol. 2001;91(4):1520–8.

    Article  CAS  PubMed  Google Scholar 

  63. Pugh LGCE. Blood volume and haemoglobin concentration at altitudes above 18,000 ft. (5500 m). J Physiol. 1964;170(2):344–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jung RC, Dill DB, Horton R, Horvath SM. Effects of age on plasma aldosterone levels and hemoconcentration at altitude. J Appl Physiol. 1971;31(4):593–7.

    Article  CAS  PubMed  Google Scholar 

  65. Ely BR, Lovering AT, Horowitz M, Minson CT. Heat acclimation and cross tolerance to hypoxia. Temp Multidiscip Biomed J. 2014;1(2):107–14.

    Google Scholar 

  66. McClung JP, Hasday JD, He J, Montain SJ, Cheuvront SN, Sawka MN, et al. Exercise-heat acclimation in humans alters baseline levels and ex vivo heat inducibility of HSP72 and HSP90 in peripheral blood mononuclear cells. Am J Physiol Regul Integr Comp Physiol. 2008;294(1):R185–91.

    Article  CAS  PubMed  Google Scholar 

  67. Wang X, Xu C, Wang X, Wang D, Wang Q, Zhang B. Heat shock response and mammal adaptation to high elevation (hypoxia). Sci China C Life Sci. 2006;49(5):500–12.

    Article  CAS  PubMed  Google Scholar 

  68. Taylor L, Midgley AW, Chrismas B, Hilman AR, Madden LA, Vince RV, et al. Daily hypoxia increases basal monocyte HSP72 expression in healthy human subjects. Amino Acids. 2011;40(2):393–401.

    Article  CAS  PubMed  Google Scholar 

  69. Bohen SP, Yamamoto KR. Isolation of Hsp90 mutants by screening for decreased steroid receptor function. Proc Natl Acad Sci U S A. 1993;90(23):11424–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wilson DF, Roy A, Lahiri S. Immediate and long-term responses of the carotid body to high altitude. High Alt Med Biol. 2005;6(2):97–111.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9(6):677–84.

    Article  CAS  PubMed  Google Scholar 

  72. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev. 1998;12(2):149–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lu D-Y, Liou H-C, Tang C-H, Fu W-M. Hypoxia-induced iNOS expression in microglia is regulated by the PI3-kinase/Akt/mTOR signaling pathway and activation of hypoxia inducible factor-1α. Biochem Pharmacol. 2006;72(8):992–1000.

    Article  CAS  PubMed  Google Scholar 

  74. Baird NA, Turnbull DW, Johnson EA. Induction of the heat shock pathway during hypoxia requires regulation of heat shock factor by hypoxia-inducible factor-1. J Biol Chem. 2006;281(50):38675–81.

    Article  CAS  PubMed  Google Scholar 

  75. González-Alonso J, Crandall CG, Johnson JM. The cardiovascular challenge of exercising in the heat. J Physiol. 2008;586(Pt 1):45–53.

    Article  PubMed  CAS  Google Scholar 

  76. Alexander JK, Hartley LH, Modelski M, Grover RF. Reduction of stroke volume during exercise in man following ascent to 3,100 m altitude. J Appl Physiol. 1967;23(6):849–58.

    Article  CAS  PubMed  Google Scholar 

  77. Saltin B, Grover BCG, Hartley LH, Johnson RL Jr. Maximal oxygen uptake and cardiac output after 2 weeks at 4,300 m. J Appl Physiol. 1968;25(4):400–9.

    Article  Google Scholar 

  78. Vogel JA, Hartley LH, Cruz JC, Hogan RP. Cardiac output during exercise in sea-level residents at sea level and high altitude. J Appl Physiol. 1974;36(2):169–72.

    Article  CAS  PubMed  Google Scholar 

  79. Reeves JT, Mazzeo RS, Wolfel EE, Young AJ. Increased arterial pressure after acclimatization to 4300 m: possible role of norepinephrine. Int J Sports Med. 1992;13(S 1):S18–21.

    Article  CAS  PubMed  Google Scholar 

  80. Puranen A, Rusko H. On- and off-responses of EPO, reticulocytes, 2,3-DPG and plasma volume to living high, training low. Med Sci Sports Exerc. 1996;28(5):S159.

    Article  Google Scholar 

  81. Hahn AG, Gore CJ. The effect of altitude on cycling performance: a challenge to traditional concepts. Sports Med. 2001;31(7):533–57.

    Article  CAS  PubMed  Google Scholar 

  82. Duke JW, Chapman RF, Levine BD. Live-high train-low altitude training on maximal oxygen consumption in athletes: a systematic review and meta-analysis. Int J Sports Sci Coach. 2012;7(1):15–20.

    Article  Google Scholar 

  83. Reynafarje B. Myoglobin content and enzymatic activity of muscle and altitude adaptation. J Appl Physiol. 1962;17:301–5.

    Article  CAS  PubMed  Google Scholar 

  84. Bisgard GE, Forster HV. Ventilatory responses to acute and chronic hypoxia. In: Handbook of physiology. Section 4. Environmental physiology. New York: Oxford University Press; 1996. p. 1207–39.

    Google Scholar 

  85. Melissa L, MacDougall JD, Tarnopolsky MA, Cipriano N, Green HJ. Skeletal muscle adaptations to training under normobaric hypoxic versus normoxic conditions. Med Sci Sports Exerc. 1997;29(2):238–43.

    Article  CAS  PubMed  Google Scholar 

  86. Vogt M, Puntschart A, Geiser J, Zuleger C, Billeter R, Hoppeler H. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol. 2001;91(1):173–82.

    Article  CAS  PubMed  Google Scholar 

  87. Lundby C, Calbet JAL, Robach P. The response of human skeletal muscle tissue to hypoxia. Cell Mol Life Sci. 2009;66(22):3615–23.

    Article  CAS  PubMed  Google Scholar 

  88. Saltin B. Aerobic and anaerobic work capacity at 2300 meters. Med Thorac. 1967;24(4):205–10.

    CAS  PubMed  Google Scholar 

  89. Levine BD. Living high-training low: the effect of altitude acclimatization/normoxic training in trained runners. Med Sci Sports Exerc. 1997;23(S25).

    Google Scholar 

  90. Levine BD, Stray-Gundersen J. A practical approach to altitude training: where to live and train for optimal performance enhancement. Int J Sports Med. 1992;13(Suppl 1):S209–12.

    Article  PubMed  Google Scholar 

  91. Levine BD, Stray-Gundersen J. The effects of altitude training are mediated primarily by acclimatization, rather than by hypoxic exercise. Adv Exp Med Biol. 2001;502:75–88.

    Article  CAS  PubMed  Google Scholar 

  92. Lundby C, Gassmann M, Pilegaard H. Regular endurance training reduces the exercise induced HIF-1α and HIF-2α mRNA expression in human skeletal muscle in normoxic conditions. Eur J Appl Physiol. 2006;96(4):363–9.

    Article  CAS  PubMed  Google Scholar 

  93. Stray-Gundersen J, Chapman RF, Levine BD. “Living high-training low” altitude training improves sea level performance in male and female elite runners. J Appl Physiol (1985). 2001;91(3):1113–20.

    Article  CAS  Google Scholar 

  94. Brugniaux JV, Schmitt L, Robach P, Nicolet G, Fouillot J-P, Moutereau S, et al. Eighteen days of “living high, training low” stimulate erythropoiesis and enhance aerobic performance in elite middle-distance runners. J Appl Physiol (1985). 2006;100(1):203–11.

    Article  Google Scholar 

  95. Wehrlin JP, Zuest P, Hallén J, Marti B. Live high-train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes. J Appl Physiol. 2006;100(6):1938–45.

    Article  CAS  PubMed  Google Scholar 

  96. Saunders PU, Telford RD, Pyne DD, Gore CJ, Hahn AG. Improved race performance in elite middle-distance runners after cumulative altitude exposure. Int J Sports Physiol Perform. 2009;4(1):134–8.

    Article  PubMed  Google Scholar 

  97. Garvican LA, Pottgiesser T, Martin DT, Schumacher YO, Barras M, Gore CJ. The contribution of haemoglobin mass to increases in cycling performance induced by simulated LHTL. Eur J Appl Physiol. 2011;111(6):1089–101.

    Article  PubMed  Google Scholar 

  98. Siebenmann C, Robach P, Jacobs RA, Rasmussen P, Nordsborg N, Diaz V, et al. “Live high–train low” using normobaric hypoxia: a double-blinded, placebo-controlled study. J Appl Physiol. 2012;112(1):106–17.

    Article  PubMed  Google Scholar 

  99. Rodríguez FA, Iglesias X, Feriche B, Calderón-Soto C, Chaverri D, Wachsmuth NB, et al. Altitude training in elite swimmers for sea level performance (altitude project). Med Sci Sports Exerc. 2015;47(9):1965–78.

    Article  PubMed  Google Scholar 

  100. Bonetti DL, Hopkins WG. Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Med. 2009;39(2):107–27.

    Article  PubMed  Google Scholar 

  101. Ventura N, Hoppeler H, Seiler R, Binggeli A, Mullis P, Vogt M. The response of trained athletes to six weeks of endurance training in hypoxia or normoxia. Int J Sports Med. 2003;24(3):166–72.

    Article  CAS  PubMed  Google Scholar 

  102. Dufour SP, Ponsot E, Zoll J, Doutreleau S, Lonsdorfer-Wolf E, Geny B, et al. Exercise training in normobaric hypoxia in endurance runners. I. Improvement in aerobic performance capacity. J Appl Physiol (1985). 2006;100(4):1238–48.

    Article  CAS  Google Scholar 

  103. Chapman RF, Laymon Stickford AS, Lundby C, Levine BD. Timing of return from altitude training for optimal sea level performance. J Appl Physiol. 2014;116(7):837–43.

    Article  PubMed  Google Scholar 

  104. Castellani JW, Muza SR, Cheuvront SN, Sils IV, Fulco CS, Kenefick RW, et al. Effect of hypohydration and altitude exposure on aerobic exercise performance and acute mountain sickness. J Appl Physiol. 2010;109(6):1792–800.

    Article  PubMed  Google Scholar 

  105. Sawka MN, Cheuvront SN, Kenefick RW. Hypohydration and human performance: impact of environment and physiological mechanisms. Sports Med. 2015;45(Suppl 1):S51–60.

    Article  PubMed  Google Scholar 

  106. McCleave EL, Slattery KM, Duffield R, Saunders PU, Sharma AP, Crowcroft SJ, et al. Temperate performance benefits after heat, but not combined heat and hypoxic training. Med Sci Sport Exerc. 2017;49(3):509–17.

    Article  Google Scholar 

  107. Vigil JI. The anatomy of a medal [Internet]. [Cited March 21, 2017]. http://www.coolrunning.com/engine/2/2_1/the-anatomy-of-a-medal.shtml.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley W. Vandermark PhD, ATC, PES .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vandermark, L.W., Lorenzo, S., Chapman, R.F. (2018). Altitude. In: Casa, D. (eds) Sport and Physical Activity in the Heat. Springer, Cham. https://doi.org/10.1007/978-3-319-70217-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70217-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70216-2

  • Online ISBN: 978-3-319-70217-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics