Modeling Complex Systems

  • Marco Alberto Javarone
Part of the SpringerBriefs in Complexity book series (BRIEFSCOMPLEXITY)


Statistical Physics deals with a number of topics of absolute relevance in Physics, as phase transitions. Notably, it aims to connect the macroscopic behavior of a system with the local mechanisms of its constituents, e.g. one aims to connect the thermodynamic view of a gas with its mechanical laws (i.e. the kinetic theory). As result, this approach becomes strongly valuable when dealing with complex systems, also in those cases where the subject of investigation is a non-physical system, like a Social Network or a Socio-Economic system.


  1. 1.
    Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Barra, A., Agliari, E.: A statistical mechanics approach to Granovetter theory. Physica A 391(10), 3017–3026 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Barra, A., Galluzzi, A., Guerra, F., Pizzoferrato, A., Tantari, D.: Mean field bipartite spin models treated with mechanical techniques. Eur. Phys. J. B 87(3), 1–13 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Barrat, A., Barthelemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)CrossRefMATHGoogle Scholar
  5. 5.
    Battiston, F., Nicosia, V., Latora, V.: Structural measures for multiplex networks. Phys. Rev. E 89, 032804 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Bianconi, G.: Statistical mechanics of multiplex networks: entropy and overlap. Phys. Rev. E 87, 062806 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424(4), 175–308 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Caldarelli, G.: Scale-Free Networks: Complex Webs in Nature and Technology. Oxford University Press, Oxford (2007)CrossRefMATHGoogle Scholar
  9. 9.
    Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81(2), 591 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    D’Orsogna, M.R., Perc, M.: Statistical physics of crime: a review. Phys. Life Rev. 12, 1–21 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    De Domenico, M., Sole-Ribalta, A., Cozzo, E., Kivela, M., Moreno, Y., Porter, A.M., Gomex, S., Arenas, A.: Mathematical formulation of multilayer networks. Phys. Rev. X 3, 041022 (2013)Google Scholar
  12. 12.
    Estrada, E.: The Structure of Complex Networks: Theory and Applications. Oxford University Press, Oxford (2012)MATHGoogle Scholar
  13. 13.
    Galam, S.: Sociophysics: a review of Galam models. Int. J. Mod. Phys. C 19(03), 409–440 (2008)ADSCrossRefMATHGoogle Scholar
  14. 14.
    Genovese, G., Barra, A.: A mechanical approach to mean field spin models. J. Math. Phys. 50(5), 053303 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hofbauer, J., Shuster, P., Sigmund, K.: A note on evolutionary stable strategies and game dynamics. J. Theor. Biol. 81, 609–612 (1979)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Huang, K.: Statistical Mechanics, 2nd edn. Wiley, London (1987)MATHGoogle Scholar
  17. 17.
    Javarone, M.A.: Network strategies in election campaigns. J. Stat. Mech: Theory Exp. P08013 (2014)Google Scholar
  18. 18.
    Kouvaris, N.E., Hata, S., Diaz-Guilera, A.: Pattern formation in multiplex networks. Sci. Rep. 5, 10840 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Latora, V., Nicosia, V.: Complex Networks: Principles, Methods and Applications. Cambridge University Press, Cambridge (2017)CrossRefMATHGoogle Scholar
  20. 20.
    Liao, W., et al.: Small-world directed networks in the human brain: multivariate Granger causality analysis of resting-state fMRI. Neuroimage 54(4), 2683–2694 (2011)CrossRefGoogle Scholar
  21. 21.
    Marinazzo, D., et al.: Information transfer and criticality in the Ising model on the human connectome. PloS One 9(4), e93616 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Newman, M.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Nicosia, V., Bianconi, G., Barthelemy, M.: Growing multiplex networks. Phys. Rev. Lett. 111, 058701 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Nishimori, H.: Statistical Physics of Spin Glasses and Information Processing. An Introduction. Clarendon Press, Oxford (2001)CrossRefMATHGoogle Scholar
  25. 25.
    Sole-Ribalta, A., De Domenico, M., Kouvaris, E., Diaz-Guilera, A., Gomex, S., Arenas, A.: Spectral properties of the Laplacian of multiplex networks. Phys. Rev. E 88, 032807 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Taylor, P.D., Jonker, L.B.: Evolutionary stable strategies and game dynamics. Math. Biosci. 40, 145–156 (1978)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature. 393, 440–442 (1998)ADSCrossRefMATHGoogle Scholar
  28. 28.
    Zeeman, E.C.: Population dynamics from game theory. In: Lecture Notes in Mathematics, vol. 819. Springer, Berlin (1980)Google Scholar

Copyright information

©  The Editor(s) (if applicable) and The Author(s) 2018

Authors and Affiliations

  • Marco Alberto Javarone
    • 1
  1. 1.School of Computer ScienceUniversity of HertfordshireHatfieldUK

Personalised recommendations