• Marco Alberto Javarone
Part of the SpringerBriefs in Complexity book series (BRIEFSCOMPLEXITY)


In the last years, we are witnessing the emergence of a new scientific field, i.e. the Science of Complexity. Actually, due to its ubiquitness among different scientific communities, e.g. physicists, biologists, sociologists, and so on, this modern field is benefiting from a positive increasing trend.


  1. 1.
    Amaral, M.A., Wardil, L., Perc, M., da Silva, J.K.L.: Stochastic win-stay-lose-shift strategy with dynamic aspirations in evolutionary social dilemmas. Phys. Rev. E 94, 032317 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    Anderson, P.W.: More is different. Science 177, 1–4 (1972)CrossRefGoogle Scholar
  3. 3.
    Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (1984)zbMATHGoogle Scholar
  4. 4.
    Cardillo, A., Meloni, S., Gomez-Gardenes, J., Moreno, Y.: Velocity-enhanced cooperation of moving agents playing public goods games. Phys. Rev. E 85(6), 067101 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Colman, A.M.: Game Theory and Its Applications. Routledge, New York, NY (2008)Google Scholar
  6. 6.
    Darwin, C.: On the Origin of Species, by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London (1859)CrossRefGoogle Scholar
  7. 7.
    Frey, E.: Evolutionary game theory: theoretical concepts and applications to microbial communities. Physica A 389, 4265–4298 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Friedman, D.: On economic applications of evolutionary game theory. J. Evol. Econ. 8(1), 15–43 (1998)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fu, F., Rosenbloom, D.I., Wang, L., Nowak, M.A.: Imitation dynamics of vaccination behaviour on social networks. Proc. R. Soc. B 278, 42–49 (2011)CrossRefGoogle Scholar
  10. 10.
    Galam, S., Walliser, B.: Ising model versus normal form game. Physica A 389, 481–489 (2010)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Gomez-Gardenes, J., Gracia-Lazaro, C., Floria, L.M., Moreno, Y.: Evolutionary dynamics on interdependent populations. Phys. Rev. E 86, 056113 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Gracia-Lazaro, C., et al.: Heterogeneous networks do not promote cooperation when humans play a prisoner’s dilemma. Proc. Natl. Acad. Sci. 109(32), 12922–12926 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Gracia-Lazaro, C., Gomez-Gardenes, J., Floria, L.M., Moreno, Y.: Intergroup information exchange drives cooperation in the public goods game. Phys. Rev. E 94, 042808 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Grujic, J., Fosco, C., Araujo, L., Cuesta, A.J., Sanchez, A.: Social experiments in the mesoscale: humans playing a spatial prisoner’s dilemma. Plos One 5(11), e13749 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Hauert, C., Szabo, G.: Game theory and physics. Am. J. Phys. 73(5), 405–414 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)Google Scholar
  17. 17.
    Javarone, M.A., Atzeni, A.E.: The role of competitiveness in the prisoner’s dilemma. Comput. Soc. Netw. 2, 15 (2015)CrossRefGoogle Scholar
  18. 18.
    Javarone, M.A., Interdonato, R., Tagarelli, A.: Modeling evolutionary dynamics of lurking in social networks. In: Studies in Computational Intelligence, p. 39. Springer, Berlin (2016)Google Scholar
  19. 19.
    Julia, P.C., Gomez-Gardenes, J., Traulsen, A., Moreno, Y.: Evolutionary game dynamics in a growing structured population. New J. Phys. 11, 083031 (2009)CrossRefGoogle Scholar
  20. 20.
    Lieberman, E., Hauert, C., Nowak, M.A.: Evolutionary dynamics on graphs. Nature 433, 312–316 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Masuda, N.: Evolution of cooperation driven by zealots. Sci. Rep. 2, 646 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Meloni, S., Buscarino, A., Fortuna, L., Frasca, M., Gomez-Gardenes, J., Latora, V., Moreno, Y.: Effects of mobility in a population of prisoner’s dilemma players. Phys. Rev. E 79(6), 067101 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Mitchell, M.: Complexity: A Guided Tour. Oxford University Press, Oxford (2009)zbMATHGoogle Scholar
  24. 24.
    Nakajima, Y., Nowak, M.: Evolutionary dynamics in finite populations with zealots. J. Math. Biol. 70(3), 465–484 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Nowak, M.A.: Five rules for the evolution of cooperation. Science 314(5805), 1560–1563 (2006a)ADSCrossRefGoogle Scholar
  26. 26.
    Nowak, M.A.: Evolutionary Dynamics. Exploring the Equations of Life. Harvard University Press, Cambridge (2006b)zbMATHGoogle Scholar
  27. 27.
    Perc, M., Grigolini, P.: Collective behavior and evolutionary games—an introduction. Chaos, Solitons Fractals 56, 1–5 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Perc, M., Szolnoki, A.: Social diversity and promotion of cooperation in the spatial prisoner’s dilemma. Phys. Rev. E 77, 011904 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Perc, M., Szolnoki, A.: Self-organization of punishment in structured populations. New J. Phys. 14, 043013 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Poncela, J., et al.: Cooperation in the prisoner’s dilemma game in random scale-free graphs. Int. J. Bifurcation Chaos 20(3), 849–857 (2010)ADSCrossRefzbMATHGoogle Scholar
  31. 31.
    Santos, F.C., Pacheco, J.M.: Scale-free networks provide a unifying framework for the emergence of cooperation. Phys. Rev. Lett. 95(9), 098104 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    Santos, F.C., Pacheco, J.M., Lenaerts, T.: Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proc. Natl. Acad. Sci. 103(9), 3490–3494 (2006a)ADSCrossRefGoogle Scholar
  33. 33.
    Santos, F.C., Rodrigues, J.F., Pacheco, J.M.: Graph topology plays a determinant role in the evolution of cooperation. Proc. R. Soc. B 273(1582), 51–55 (2006b)CrossRefGoogle Scholar
  34. 34.
    Santos, F.C., Mantos, M.D., Pacheco, J.M.: Social diversity promotes the emergence of cooperation in public goods games. Nature 454(7201), 213–216 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    Schuster, S., de Figueiredo, L., Schroeter, A., Kaleta, C.: Combining metabolic pathway analysis with evolutionary game theory. Explaining the occurrence of low-yield pathways by an analytic optimization approach. BioSystems 105, 147–153 (2011)Google Scholar
  36. 36.
    Seoane, L.F., Solé, R.: Information theory, predictability, and the emergence of complex life. arxiv:1701:02389 (2017)Google Scholar
  37. 37.
    Sigmund, K.: Games of Life: Explorations in Ecology, Evolution and Behavior. Oxford University Press, Oxford (1993)Google Scholar
  38. 38.
    Szolnoki, A., Perc, M.: Zealots tame oscillations in the spatial rock-paper-scissors game. Phys. Rev. E 93, 062307 (2016a)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Szolnoki, A., Perc, M.: Biodiversity in models of cyclic dominance is preserved by heterogeneity in site-specific invasion rates. Sci. Rep. 6, 38608 (2016b, forthcoming)Google Scholar
  40. 40.
    Szolnoki, A., Szabo, G., Perc, M.: Phase diagrams for the spatial public goods game with pool punishment. Phys. Rev. E 83, 0361101 (2011)CrossRefGoogle Scholar
  41. 41.
    Wang, Z., Xia, C.-Y., Meloni, S., Zhou, C.-S., Moreno, Y.: Impact of social punishment on cooperative behavior in complex networks. Sci. Rep. 3, 3055 (2013)CrossRefGoogle Scholar

Copyright information

©  The Editor(s) (if applicable) and The Author(s) 2018

Authors and Affiliations

  • Marco Alberto Javarone
    • 1
  1. 1.School of Computer ScienceUniversity of HertfordshireHatfieldUK

Personalised recommendations