Skip to main content

What Can Be Learnt from Ageing in Biology and Damage-Tolerant Biological Structures for Long-Lasting Biomimetic Materials?

  • Chapter
  • First Online:
The Ageing of Materials and Structures

Abstract

Ageing in biology and the principles of how living beings deal with shortcomings occurring during ageing on the structural and functional level are exemplified. The presented examples mainly focus on damage repair and damage tolerance in biological materials and structures, and on what can be learnt for ageing man-made materials and structures by using bio-inspired approaches. The potential of such an approach is specified by three examples comprising biomimetic self-repairing foam coatings for pneumatic structures, bio-inspired self-healing elastomers and biomimetic damage-tolerant fibre-reinforced gradient foams with high-energy dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sadava D, Orians G, Heller HC, Hillis D, Berenbaum MR, (Markel J ed.) (2012) Purves Biologie, 9th ed. Springer Spektrum, Heidelberg

    Google Scholar 

  2. Lexikon der Biologie (1999–2004) Elsevier/ Spektrum Akademischer Verlag, München

    Google Scholar 

  3. Speck T, Bauer G, Flues F, Oelker K, Rampf M, Schüssele AC, Tapavicza v. M, Bertling J, Luchsinger R, Nellesen A, Schmidt AM, Mülhaupt R, Speck O (2013) Bio-inspired self-healing materials. In: Fratzl P, Dunlop JWC, Weinkamer R (eds) Materials design inspired by nature: function through inner architecture, RSC smart materials No. 4, The Royal Chemical Society, London, pp 359–389

    Google Scholar 

  4. Speck T, Mülhaupt R, Speck O (2013) Self-healing in plants as bio-inspiration for self-repairing polymers. In: Binder W (ed) Self-healing materials. Wiley-VCH, Weinheim, pp 69–97

    Google Scholar 

  5. Flindt R (2003) Biologie in Zahlen, 6th edn. Spektrum Akademischer Verlag/Gustav Fischer Verlag, Heidelberg

    Google Scholar 

  6. Speck T, Schmitt M (1992) Tabellen. In: Schmitt M (ed) Biologie im Überblick, Lexikon der Biologie, vol 10. Herder Verlag, Freiburg, pp 187–328

    Google Scholar 

  7. Masselter T, Barthlott W, Bauer G, Bertling J, Cichy F, Ditsche-Kuru P, Gallenmüller M, Gude M, Haushahn T, Hermann M, Immink H, Knippers J, Lienhard J, Luchsinger R, Lunz K, Mattheck C, Milwich M, Mölders N, Neinhuis C, Nellesen A, Poppinga S, Rechberger M, Schleicher S, Schmitt C, Schwager H, Seidel R, Speck O, Stegmaier T, Tesari I, Thielen M, Speck T (2012) Biomimetic products. In: Bar-Cohen Y (ed) Biomimetics: nature-based innovation. CRC Press / Taylor & Francis Group, Boca Raton, London, New York, pp 377–429

    Google Scholar 

  8. Speck T, Speck O (2008) Process sequences in biomimetic research. In: Brebbia CA (ed) Design and nature IV. WIT Press, Southampton, pp 3–11

    Chapter  Google Scholar 

  9. Speck, O, Luchsinger R, Rampf M and Speck T (2014) Selbstreparatur in Natur und Technik. Konstruktion 9:72–75 + 82

    Google Scholar 

  10. Busch S, Seidel R, Speck O, Speck T (2010) Morphological aspects of self-repair of lesions caused by internal growth stresses in stems of Aristolochia macrophylla and Aristolochia ringens. Proc R Soc Lond. B 277:2113–2120

    Google Scholar 

  11. Rampf M, Speck O, Speck T, Luchsinger R (2013) Investigation of a fast mechanical self-repair mechanism for inflatable structures. Int J Eng Sci 63:61–70

    Article  Google Scholar 

  12. Bauer G, Speck T (2012) Restoration of tensile strength in bark samples of Ficus benjamina due to coagulation of latex during fast self-healing of fissures. Ann Bot 109:807–811

    Article  Google Scholar 

  13. Bauer G, Friedrich C, Gillig C, Vollrath F, Speck T, Holland C (2014) Investigating the rheological properties of native plant latex. J R Soc Inter 11(90). https://doi.org/10.1098/rsif.2013.0847

  14. Bauer G, Gorb S, Klein MC, Nellesen AV, Tapavicza M, Speck T (2014) Comparative study on latex particles and latex coagulation in Ficus benjamina, Campanula glomerata and three Euphorbia species. PLoS ONE 9(11):e113336. https://doi.org/10.1371/journal.pone.0113336

  15. Schüssele AC, Nübling F, Thomann Y, Carstensen O, Bauer G, Speck T, Mülhaupt R (2012) Self-healing rubbers based on NBR blends with hyperbranched polyethylenimines. Macromol Mater Eng 297:411–419

    Article  Google Scholar 

  16. Thielen M, Schmitt CNZ, Eckert S, Speck T, Seidel R (2013) Structure-function relationship of the foam-like pomelo peel (Citrus maxima)—an inspiration for the development of biomimetic damping materials with high energy dissipation. Bioinspir. Biomim. 8. https://doi.org/10.1088/1748-3182/8/2/025001

  17. Fischer SF, Thielen M, Loprang RR, Seidel R, Fleck C, Speck T, Bührig-Polaczek A (2010) Pummelos as concept generators for biomimetically-inspired low weight structures with excellent damping properties. Adv Eng Mater/Adv Biomater 12:B658–B663

    Article  Google Scholar 

  18. Thielen M, Speck T, Seidel R (2013) Viscoelasticity and compaction behaviour of the foam-like pomelo (Citrus maxima) peel. J Mater Sci 48:3469–3478

    Google Scholar 

  19. Thielen M, Speck T, Seidel R (2015) Impact behaviour of freeze-dried and fresh pomelo (Citrus maxima) peel - influence of the hydration state. R Soc Open Sci 2:140322. https://doi.org/10.1098/rsos

  20. Fischer SF, Thielen M, Weiß P, Seidel R, Speck T, Bührig-Polaczek A, Bünck M (2014) Production and properties of a precision-cast bio-inspired composite. J Mater Sci 49:43–51

    Article  Google Scholar 

  21. Spatz HC, Beismann H, Brüchert F, Emanns A, Speck T (1997) Biomechanics of the giant reed Arundo donax. Philos Trans R Soc Lond B 352:1–10

    Google Scholar 

  22. Speck T, Speck O, Emanns A, Spatz HC (1998) Biomechanics and functional anatomy of hollow stemmed sphenopsids: III. Equisetum hyemale. Botanica Acta 111:366–376

    Google Scholar 

Download references

Acknowledgements

We thank our colleagues and their research groups for excellent cooperation during the projects presented above, especially Andreas Bührig-Polaczek (RWTH Aachen), Claudia Fleck (TU Berlin), Rolf Luchsinger (EMPA Dübendorf), Rolf Mülhaupt (University of Freiburg and FMF) and Anke Nellessen (Fraunhofer Institute UMSICHT Oberhausen). We also thank Martin Köhn (University of Freiburg) for the permission to use his skull collection for making pictures. For financial support, we are grateful to (1) the German Research Foundation (DFG) for funding within the priority program 1420 “Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials” and within the Transregional Collaborative Research Centre 141 “Biological Design and Integrative Structures”, (2) to the German Federal Ministry of Education and Research for funding within the scope of the programme BIONA and the within the scope of the funding programme “Ideenwettbewerb: Bionik—Innovationen aus der Natur”, and (3) to the Ministry of Science, Research and the Arts of Baden-Württemberg in the framework of the “Sustainability Center Freiburg”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Speck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Speck, T., Thielen, M., Speck, O. (2018). What Can Be Learnt from Ageing in Biology and Damage-Tolerant Biological Structures for Long-Lasting Biomimetic Materials?. In: van Breugel, K., Koleva, D., Beek, T. (eds) The Ageing of Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-70194-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70194-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70192-9

  • Online ISBN: 978-3-319-70194-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics