Skip to main content

Nanoelectromechanical Phenomena

  • Chapter
  • First Online:
  • 473 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this section we describe the work performed to characterise the level of electrostatic interaction the substrate has with the probe and the graphene or other 2D-material sample. To do this a method of dynamic contact electrostatic force microscopy (DC-EFM) was used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hong J, Park Si, Khim Z (1999) Measurement of hardness, surface potential, and charge distribution with dynamic contact mode electrostatic force microscope. Rev Sci Instrum 70(3):1735–1739

    Article  ADS  Google Scholar 

  2. Hong J, Noh K, Park Si, Kwun S, Khim Z (1998) Surface charge density and evolution of domain structure in triglycine sulfate determined by electrostatic-force microscopy. Phys Rev B 58(8):5078

    Google Scholar 

  3. Kay ND, Robinson BJ, Falko VI, Novoselov KS, Kolosov OV (2014) Electromechanical sensing of substrate charge hidden under atomic 2D crystals. Nano Lett 14(6):3400–3404

    Google Scholar 

  4. Bonnell DA (1993) Scanning tunneling microscopy and spectroscopy: theory, techniques, and applications. VCH New York

    Google Scholar 

  5. Gere J, Gere JM, Goodno BJ (2012) Mechanics of materials. Nelson Education

    Google Scholar 

  6. Troyon M, Wang Z, Pastre D, Lei H, Hazotte A (1997) Force modulation microscopy for the study of stiff materials. Nanotechnology 8(4):163

    Article  ADS  Google Scholar 

  7. Robinson BJ, Kay ND, Kolosov OV (2013) Nanoscale interfacial interactions of graphene with polar and nonpolar liquids. Langmuir 29(25):7735–7742

    Article  Google Scholar 

  8. Bartzsch H, Glöß D, Frach P, Gittner M, Schultheiß E, Brode W et al (2009) Electrical insulation properties of sputter-deposited SiO2, Si3N4 and Al2O3 films at room temperature and 400 C. Phys Status Solidi (a) 206(3):514–519

    Google Scholar 

  9. Tipler PA, Llewellyn R (2003) Modern physics. Macmillan

    Google Scholar 

  10. Cuberes MT, Assender H, Briggs GAD, Kolosov O (2000) Heterodyne force microscopy of PMMA/rubber nanocomposites: nanomapping of viscoelastic response at ultrasonic frequencies. J Phys D Appl Phys 33(19):2347

    Article  ADS  Google Scholar 

  11. Verbiest G, Rost M (2015) Beating beats mixing in heterodyne detection schemes. Nat Commun 6

    Google Scholar 

  12. Verbiest G, Oosterkamp T, Rost M (2013) Contrast mechanism in heterodyne force microscopy: Friction at Shaking Nanoparticles

    Google Scholar 

  13. Tetard L, Passian A, Thundat T (2010) New modes for subsurface atomic force microscopy through nanomechanical coupling. Nat Nanotechnol 5(2):105–109

    Article  ADS  Google Scholar 

  14. Bridges G, Said R, Mittal M, Thomson D (1994) Sampled waveform measurement in integrated circuits using heterodyne electrostatic force microscopy. Rev Sci Instrum 65(11):3378–3381

    Article  ADS  Google Scholar 

  15. Verbiest G, Rost M (2016) Resonance frequencies of AFM cantilevers in contact with a surface. Ultramicroscopy 171:70–76

    Article  Google Scholar 

  16. Denboef AJ (1991) Scanning force microscopy using optical interferometry

    Google Scholar 

  17. Schönenberger C, Alvarado S (1989) A differential interferometer for force microscopy. Rev Sci Instrum 60(10):3131–3134

    Article  ADS  Google Scholar 

  18. Paolino P, Sandoval FAA, Bellon L (2013) Quadrature phase interferometer for high resolution force spectroscopy. Rev Sci Instrum 84(9):095001

    Article  ADS  Google Scholar 

  19. Blake P, Hill E, Neto AC, Novoselov K, Jiang D, Yang R et al (2007) Making graphene visible. Appl Phys Lett 91(6):063124

    Article  ADS  Google Scholar 

  20. Roddaro S, Pingue P, Piazza V, Pellegrini V, Beltram F (2007) The optical visibility of graphene: interference colors of ultrathin graphite on SiO2. Nano Lett 7(9):2707–2710

    Article  ADS  Google Scholar 

  21. Abergel D, Russell A, Fal’ko VI (2007) Visibility of graphene flakes on a dielectric substrate. arXiv:07050091

  22. Anders H (1967) Thin films in optics. Focal Press, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas D. Kay .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kay, N.D. (2018). Nanoelectromechanical Phenomena. In: Nanomechanical and Nanoelectromechanical Phenomena in 2D Atomic Crystals. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-70181-3_6

Download citation

Publish with us

Policies and ethics