Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 470 Accesses

Abstract

Atomically thin crystals were once thought to be unstable in ambient conditions due to large thermally induced lattice vibrations [1,2,3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Landau L (1937) Zur Theorie der phasenumwandlungen II. Phys Z Sowjetunion 11:26–35

    MATH  Google Scholar 

  2. Peierls R (1935) Quelques proprietes typiques des corpses solides. Ann IH Poincare 5:177–222

    MATH  Google Scholar 

  3. Landau L, Lifshitz E (1980) Statistical physics part 1, 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  4. Bernal J (1924) The structure of graphite. Proc R Soc Lond Ser A, Containing Pap Math Phys Charact 106(740):749–773

    Article  ADS  Google Scholar 

  5. Lennard-Jones J (1934) Discussion on graphite. Trans Faraday Soc 30:58

    Google Scholar 

  6. Verble J, Wietling T, Reed P (1972) Rigid-layer lattice vibrations and van der waals bonding in hexagonal MoS2. Solid State Commun 11(8):941–944

    Article  ADS  Google Scholar 

  7. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  ADS  Google Scholar 

  8. Hunt B, Sanchez-Yamagishi J, Young A, Yankowitz M, LeRoy BJ, Watanabe K et al (2013) Massive dirac fermions and hofstadter butterfly in a van der waals heterostructure. Science 340(6139):1427–1430

    Article  ADS  Google Scholar 

  9. Ponomarenko L, Gorbachev R, Yu G, Elias D, Jalil R, Patel A et al (2013) Cloning of dirac fermions in graphene superlattices. Nature 497(7451):594–597

    Article  ADS  Google Scholar 

  10. Britnell L, Gorbachev R, Geim A, Ponomarenko L, Mishchenko A, Greenaway M et al (2013) Resonant tunnelling and negative differential conductance in graphene transistors. Nat Commun 4:1794

    Article  Google Scholar 

  11. Ponomarenko L, Geim A, Zhukov A, Jalil R, Morozov S, Novoselov K et al (2011) Tunable metal-insulator transition in double-layer graphene heterostructures. Nat Phys 7(12):958–961

    Article  Google Scholar 

  12. Obraztsov AN (2009) Chemical vapour deposition: making graphene on a large scale. Nat Nanotechnol 4(4):212–213

    Article  ADS  Google Scholar 

  13. Wang M, Jang SK, Jang WJ, Kim M, Park SY, Kim SW et al (2013) A platform for large-scale graphene electronics-CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv Mater 25(19):2746–2752

    Article  Google Scholar 

  14. Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D et al (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9(12):4359–4363

    Article  ADS  Google Scholar 

  15. Emtsev K, Speck F, Seyller T, Ley L, Riley JD (2008) Interaction, growth, and ordering of epitaxial graphene on SiC \(\{\)0001\(\}\) surfaces: a comparative photoelectron spectroscopy study. Phys Rev B 77(15):155303

    Article  ADS  Google Scholar 

  16. Riedl C, Coletti C, Starke U (2010) Structural and electronic properties of epitaxial graphene on SiC (0 0 0 1): a review of growth, characterization, transfer doping and hydrogen intercalation. J Phys D Appl Phys 43(37):374009

    Article  Google Scholar 

  17. Withers F, Del Pozo-Zamudio O, Mishchenko A, Rooney A, Gholinia A, Watanabe K et al (2015) Light-emitting diodes by band-structure engineering in van der waals heterostructures. Nat Mater 14(3):301–306

    Article  ADS  Google Scholar 

  18. Haigh S, Gholinia A, Jalil R, Romani S, Britnell L, Elias D et al (2012) Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. arXiv preprint arXiv:12066698

  19. Yamanaka K, Ogiso H, Kolosov O (1994) Ultrasonic force microscopy for nanometer resolution subsurface imaging. Appl Phys Lett 64(2):178–180

    Article  ADS  Google Scholar 

  20. Striegler A, Pathuri N, Köhler B, Bendjus B (2007) Visibility of buried structures in atomic force acoustic microscopy. Rev Prog Quant Nondestr Eval 894:1572–1576 (AIP Publishing)

    Google Scholar 

  21. Kolosov O, Grishin I, Jones R (2011) Material sensitive scanning probe microscopy of subsurface semiconductor nanostructures via beam exit Ar ion polishing. Nanotechnology 22(18):185702

    Article  ADS  Google Scholar 

  22. Dinelli F, Pingue P, Kay ND, Kolosov OV (2017) Subsurface imaging of two-dimensional materials at the nanoscale. Nanotechnology 28(8):085706

    Article  ADS  Google Scholar 

  23. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  ADS  Google Scholar 

  24. Ekinci K, Huang X, Roukes M (2004) Ultrasensitive nanoelectromechanical mass detection. Appl Phys Lett 84(22):4469–4471

    Article  ADS  Google Scholar 

  25. Lee HL, Yang YC, Chang WJ (2013) Mass detection using a graphene-based nanomechanical resonator. Jpn J Appl Phys 52(2R):025101

    Article  ADS  Google Scholar 

  26. Garcia-Sanchez D, van der Zande AM, Paulo AS, Lassagne B, McEuen PL, Bachtold A (2008) Imaging mechanical vibrations in suspended graphene sheets. Nano Lett 8(5):1399–1403

    Article  ADS  Google Scholar 

  27. Rivas M, Vyas V, Carter A, Veronick J, Khan Y, Kolosov OV et al (2015) Nanoscale mapping of in situ actuating microelectromechanical systems with AFM. J Mater Res 30(03):429–441

    Article  ADS  Google Scholar 

  28. Cuberes MT, Assender H, Briggs GAD, Kolosov O (2000) Heterodyne force microscopy of PMMA/rubber nanocomposites: nanomapping of viscoelastic response at ultrasonic frequencies. J Phys D Appl Phys 33(19):2347

    Article  ADS  Google Scholar 

  29. Bunch JS, Van Der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM et al (2007) Electromechanical resonators from graphene sheets. Science 315(5811):490–493

    Article  ADS  Google Scholar 

  30. Cole RM, Brawley GA, Adiga VP, De Alba R, Parpia JM, Ilic B et al (2015) Evanescent-field optical readout of graphene mechanical motion at room temperature. Phys Rev Appl 3:024004. https://doi.org/10.1103/PhysRevApplied.3.024004

  31. Denboef AJ (1991) Scanning force microscopy using optical interferometry

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas D. Kay .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kay, N.D. (2018). Introduction. In: Nanomechanical and Nanoelectromechanical Phenomena in 2D Atomic Crystals. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-70181-3_1

Download citation

Publish with us

Policies and ethics