Sex Differences in Leptin Control of Cardiovascular Function in Health and Metabolic Diseases

  • Eric J. Belin de Chantemèle
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1043)


Leptin, the adipocyte-derived hormone identified in 1994 for its major role in the control of satiety and body weight regulation, is an adipokine secreted in a sex-specific manner. Although it has clearly been established that females secrete three to four times more leptin than males and that this sexual dimorphism in leptin secretion is exacerbated with overweight and obesity, the origin and the physiological consequences of this sexual dimorphism remain ill-defined. The adipose tissue is the major site of leptin secretion; however, leptin receptors are ubiquitously expressed, conferring to leptin, and indirectly to the adipose tissue, a potential role in the control of numerous physiological functions. Besides its major role in the control of food intake and energy expenditure, leptin has been shown to contribute to the control of immune, bone, reproductive, and cardiovascular functions. The goal of the present chapter is to review and discuss the current knowledge on the contribution of leptin to the control of cardiovascular function while focusing on the impact of the sexual dimorphism in leptin secretion and of the pathological increases in leptin levels induced by overweight and obesity.



Autonomous nervous system


Arcuate nucleus


Body mass index


Blood pressure


Gene coding for leptin receptor




High frequency


Low frequency


Nω-nitro-l-arginine methyl ester


Mineralocorticoid receptor


Muscular sympathetic nerve activity


Nitric oxide


Gene coding for leptin


Protein tyrosine phosphatase 1b


Sympathetic nerve activity


  1. Agata, J., Masuda, A., Takada, M., Higashiura, K., Murakami, H., Miyazaki, Y., & Shimamoto, K. (1997). High plasma immunoreactive leptin level in essential hypertension. American Journal of Hypertension, 10, 1171–1174.CrossRefPubMedGoogle Scholar
  2. Aizawa-Abe, M., Ogawa, Y., Masuzaki, H., Ebihara, K., Satoh, N., Iwai, H., Matsuoka, N., Hayashi, T., Hosoda, K., Inoue, G., Yoshimasa, Y., & Nakao, K. (2000). Pathophysiological role of leptin in obesity-related hypertension. The Journal of Clinical Investigation, 105, 1243–1252.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Asirvatham-Jeyaraj, N., Fiege, J. K., Han, R., Foss, J., Banek, C. T., Burbach, B. J., Razzoli, M., Bartolomucci, A., Shimizu, Y., Panoskaltsis-Mortari, A., & Osborn, J. W. (2016). Renal denervation normalizes arterial pressure with no effect on glucose metabolism or renal inflammation in obese hypertensive mice. Hypertension, 68, 929–936.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barba, G., Russo, O., Siani, A., Iacone, R., Farinaro, E., Gerardi, M. C., Russo, P., Della Valle, E., & Strazzullo, P. (2003). Plasma leptin and blood pressure in men: Graded association independent of body mass and fat pattern. Obesity Research, 11, 160–166.CrossRefPubMedGoogle Scholar
  5. Behre, H. M., Simoni, M., & Nieschlag, E. (1997). Strong association between serum levels of leptin and testosterone in men. Clinical Endocrinology, 47, 237–240.CrossRefPubMedGoogle Scholar
  6. Belin De Chantemele, E. J., Muta, K., Mintz, J., Tremblay, M. L., Marrero, M. B., Fulton, D. J., & Stepp, D. W. (2009). Protein tyrosine phosphatase 1B, a major regulator of leptin-mediated control of cardiovascular function. Circulation, 120, 753–763.CrossRefPubMedGoogle Scholar
  7. Belin de Chantemele, E. J., Mintz, J. D., Rainey, W. E., & Stepp, D. W. (2011). Impact of leptin-mediated sympatho-activation on cardiovascular function in obese mice. Hypertension, 58, 271–279.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bell, C., Seals, D. R., Monroe, M. B., Day, D. S., Shapiro, L. F., Johnson, D. G., & Jones, P. P. (2001). Tonic sympathetic support of metabolic rate is attenuated with age, sedentary lifestyle, and female sex in healthy adults. The Journal of Clinical Endocrinology and Metabolism, 86, 4440–4444.CrossRefPubMedGoogle Scholar
  9. Beltowski, J., G W, J., Gorny, D., & Marciniak, A. (2002a). Human leptin administered intraperitoneally stimulates natriuresis and decreases renal medullary Na+, K+−ATPase activity in the rat – impaired effect in dietary-induced obesity. Medical Science Monitor, 8, BR221–BR229.PubMedGoogle Scholar
  10. Beltowski, J., Wojcicka, G., & Borkowska, E. (2002b). Human leptin stimulates systemic nitric oxide production in the rat. Obesity Research, 10, 939–946.CrossRefPubMedGoogle Scholar
  11. Bennett, F. I., Mcfarlane-Anderson, N., Wilks, R., Luke, A., Cooper, R. S., & Forrester, T. E. (1997). Leptin concentration in women is influenced by regional distribution of adipose tissue. The American Journal of Clinical Nutrition, 66, 1340–1344.CrossRefPubMedGoogle Scholar
  12. Bochud, M., Nussberger, J., Bovet, P., Maillard, M. R., Elston, R. C., Paccaud, F., Shamlaye, C., & Burnier, M. (2006). Plasma aldosterone is independently associated with the metabolic syndrome. Hypertension, 48, 239–245.CrossRefPubMedGoogle Scholar
  13. Bruder-Nascimento, T., Butler, B. R., Herren, D. J., Brands, M. W., Bence, K. K., & Belin de Chantemele, E. J. (2015). Deletion of protein tyrosine phosphatase 1b in proopiomelanocortin neurons reduces neurogenic control of blood pressure and protects mice from leptin- and sympatho-mediated hypertension. Pharmaceutical Research, 102, 235–244.CrossRefGoogle Scholar
  14. Calhoun, D. A., & Sharma, K. (2010). The role of aldosteronism in causing obesity-related cardiovascular risk. Cardiology Clinics, 28, 517–527.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Campfield, L. A., Smith, F. J., Guisez, Y., Devos, R., & Burn, P. (1995). Recombinant mouse OB protein: Evidence for a peripheral signal linking adiposity and central neural networks. Science, 269, 546–549.CrossRefPubMedGoogle Scholar
  16. Carlyle, M., Jones, O. B., Kuo, J. J., & Hall, J. E. (2002). Chronic cardiovascular and renal actions of leptin: Role of adrenergic activity. Hypertension, 39, 496–501.CrossRefPubMedGoogle Scholar
  17. Christou, D. D., Jones, P. P., Jordan, J., Diedrich, A., Robertson, D., & Seals, D. R. (2005). Women have lower tonic autonomic support of arterial blood pressure and less effective baroreflex buffering than men. Circulation, 111, 494–498.CrossRefPubMedGoogle Scholar
  18. Coleman, D. L. (1973). Effects of parabiosis of obese with diabetes and normal mice. Diabetologia, 9, 294–298.CrossRefPubMedGoogle Scholar
  19. Coleman, D. L., & Hummel, K. P. (1973). The influence of genetic background on the expression of the obese (Ob) gene in the mouse. Diabetologia, 9, 287–293.CrossRefPubMedGoogle Scholar
  20. Collins, S., Kuhn, C. M., Petro, A. E., Swick, A. G., Chrunyk, B. A., & Surwit, R. S. (1996). Role of leptin in fat regulation. Nature, 380, 677.CrossRefPubMedGoogle Scholar
  21. Considine, R. V., Sinha, M. K., Heiman, M. L., Kriauciunas, A., Stephens, T. W., Nyce, M. R., Ohannesian, J. P., Marco, C. C., Mckee, L. J., Bauer, T. L., & Caro, J. F. (1996). Serum immunoreactive-leptin concentrations in normal-weight and obese humans. The New England Journal of Medicine, 334, 292–295.CrossRefPubMedGoogle Scholar
  22. Correia, M. L. G., Morgan, D. A., Sivitz, W. I., Mark, A. L., & Haynes, W. G. (2001). Leptin acts in the central nervous system to produce dose-dependent changes in arterial pressure. Hypertension, 37, 936–942.CrossRefPubMedGoogle Scholar
  23. Correia, M. L. G., Haynes, W. G., Rahmouni, K., Morgan, D. A., Sivitz, W. I., & Mark, A. L. (2002). The concept of selective leptin resistance. Diabetes, 51, 439–442.CrossRefPubMedGoogle Scholar
  24. Dibona, G. F. (2000). Neural control of the kidney: Functionally specific renal sympathetic nerve fibers. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 279, R1517–R1524.CrossRefPubMedGoogle Scholar
  25. Do Carmo, J. M., Da Silva, A. A., CAI, Z., Lin, S., Dubinion, J. H., & Hall, J. E. (2011). Control of blood pressure, appetite, and glucose by leptin in mice lacking leptin receptors in proopiomelanocortin neurons. Hypertension, 57, 918–926.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Douchi, T., Iwamoto, I., Yoshimitsu, N., Kosha, S., & Nagata, Y. (2002). Leptin production in pre- and postmenopausal women. Maturitas, 42, 219–223.CrossRefPubMedGoogle Scholar
  27. Dunbar, J. C., Hu, Y., & Lu, H. (1997). Intracerebroventricular leptin increases lumbar and renal sympathetic nerve activity and blood pressure in normal rats. Diabetes, 46, 2040–2043.CrossRefPubMedGoogle Scholar
  28. Ehrhart-Bornstein, M., Lamounier-Zepter, V., Schraven, A., Langenbach, J., Willenberg, H. S., Barthel, A., Hauner, H., Mccann, S. M., Scherbaum, W. A., & Bornstein, S. R. (2003). Human adipocytes secrete mineralocorticoid-releasing factors. Proceedings of the National Academy of Sciences, 100, 14211–14216.CrossRefGoogle Scholar
  29. Elbers, J. M., Asscheman, H., Seidell, J. C., Frolich, M., Meinders, A. E., & Gooren, L. J. (1997). Reversal of the sex difference in serum leptin levels upon cross-sex hormone administration in transsexuals. The Journal of Clinical Endocrinology and Metabolism, 82, 3267–3270.PubMedGoogle Scholar
  30. Emilsson, V., Liu, Y. L., Cawthorne, M. A., Morton, N. M., & Davenport, M. (1997). Expression of the functional leptin receptor mRNA in pancreatic islets and direct inhibitory action of leptin on insulin secretion. Diabetes, 46, 313–316.CrossRefPubMedGoogle Scholar
  31. Esler, M., Straznicky, N., Eikelis, N., Masuo, K., Lambert, G., & Lambert, E. (2006). Mechanisms of sympathetic activation in obesity-related hypertension. Hypertension, 48, 787–796.CrossRefPubMedGoogle Scholar
  32. Flanagan, D. E., Vaile, J. C., Petley, G. W., Phillips, D. I., Godsland, I. F., Owens, P., Moore, V. M., Cockington, R. A., & Robinson, J. S. (2007). Gender differences in the relationship between leptin, insulin resistance and the autonomic nervous system. Regulatory Peptides, 140, 37–42.CrossRefPubMedGoogle Scholar
  33. Frederich, R. C., Hamann, A., Anderson, S., Lollmann, B., Lowell, B. B., & Flier, J. S. (1995). Leptin levels reflect body lipid content in mice: Evidence for diet-induced resistance to leptin action. Nature Medicine, 1, 1311–1314.CrossRefPubMedGoogle Scholar
  34. Frederiksen, L., Hojlund, K., Hougaard, D. M., Mosbech, T. H., Larsen, R., Flyvbjerg, A., Frystyk, J., Brixen, K., & Andersen, M. (2012). Testosterone therapy decreases subcutaneous fat and adiponectin in aging men. European Journal of Endocrinology, 166, 469–476.CrossRefPubMedGoogle Scholar
  35. Fruhbeck, G. (1999). Pivotal role of nitric oxide in the control of blood pressure after leptin administration. Diabetes, 48, 903–908.CrossRefPubMedGoogle Scholar
  36. Galletti, F., D’Elia, L., Barba, G., Siani, A., Cappuccio, F. P., Farinaro, E., Iacone, R., Russo, O., De Palma, D., Ippolito, R., & Satrazzullo, P. (2008). High-circulating leptin levels are associated with greater risk of hypertension in men independently of body mass and insulin resistance: Results of an eight-year follow-up study. The Journal of Clinical Endocrinology and Metabolism, 93, 3922–3926.CrossRefPubMedGoogle Scholar
  37. Gerra, B., Fuentes, T., Delgado-Guerra, S., Guadalupe-Grau, A., Olmedillas, H., Santana, A., Ponce-Gonzalez, J. G., Dorado, C., & Calbet, J. A. (2008). Gender dimorphism in skeletal muscle leptin receptors, serum leptin and insulin sensitivity. PLoS One, 3, e3466.CrossRefGoogle Scholar
  38. Go, A. S., Mozaffarian, D., Roger, V. L., Benjamin, E. J., Berry, J. D., Borden, W. B., Bravata, D. M., Dai, S., Ford, E. S., Fox, C. S., Franco, S., Fullerton, H. J., Gillespie, C., Hailpern, S. M., Heit, J. A., Howard, V. J., Huffman, M. D., Kissela, B. M., Kittner, S. J., Lackland, D. T., Lichtman, J. H., Lisabeth, L. D., Magid, D., Marcus, G. M., Marelli, A., Matchar, D. B., Mcguire, D. K., Mohler, E. R., Moy, C. S., Mussolino, M. E., Nichol, G., Paynter, N. P., Schreiner, P. J., Sorlie, P. D., Stein, J., Turan, T. N., Virani, S. S., Wong, N. D., Woo, D., & Turner, M. B. (2013). Heart disease and stroke statistics—2013 update: A report from the American Heart Association. Circulation, 127, e6–e245.CrossRefPubMedGoogle Scholar
  39. Grassi, G., Seravalle, G., Cattaneo, B. M., Bolla, G. B., Lanfranchi, A., Colombo, M., Giannattasio, C., Brunani, A., Cavagnini, F., & Mancia, G. (1995). Sympathetic activation in obese normotensive subjects. Hypertension, 25, 560–563.CrossRefPubMedGoogle Scholar
  40. Green, D. J., Hopkins, N. D., Jones, H., Thijssen, D. H., Eijsvogels, T. M., & Yeap, B. B. (2016). Sex differences in vascular endothelial function and health in humans: Impacts of exercise. Experimental Physiology, 101, 230–242.CrossRefPubMedGoogle Scholar
  41. Greenfield, J. R., Miller, J. W., Keogh, J. M., Henning, E., Satterwhite, J. H., Cameron, G. S., Astruc, B., Mayer, J. P., Brage, S., See, T. C., Lomas, D. J., O’Rahilly, S., & Farooqi, I. S. (2009). Modulation of blood pressure by central melanocortinergic pathways. The New England Journal of Medicine, 360, 44–52.CrossRefPubMedGoogle Scholar
  42. Halaas, J. L., Gajiwala, K. S., Maffei, M., Cohen, S. L., Chait, B. T., Rabinowitz, D., Lallone, R. L., Burley, S. K., & Friedman, J. M. (1995). Weight-reducing effects of the plasma protein encoded by the obese gene. Science, 269, 543–546.CrossRefPubMedGoogle Scholar
  43. Hall, J. E., Do Carmo, J. M., Da Silva, A. A., Wang, Z., & Hall, M. E. (2015). Obesity-induced hypertension: Interaction of neurohumoral and renal mechanisms. Circulation Research, 116, 991–1006.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Harlan, S. M., & Rahmouni, K. (2013). Neuroanatomical determinants of the sympathetic nerve responses evoked by leptin. Clinical Autonomic Research, 23, 1–7.CrossRefPubMedGoogle Scholar
  45. Harlan, S. M., Morgan, D. A., Agassandian, K., Guo, D.-F., Cassell, M. D., Sigmund, C. D., Mark, A. L., & Rahmouni, K. (2011a). Ablation of the leptin receptor in the hypothalamic arcuate nucleus abrogates leptin-induced sympathetic activation. Circulation Research, 108, 808–812.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Harlan, S. M., Morgan, D. A., Dellsperger, D. J., Myers, M. G., Jr., Mark, A. L., & Rahmouni, K. (2011b). Cardiovascular and sympathetic effects of disrupting tyrosine 985 of the leptin receptor. Hypertension, 57, 627–632.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hattangady, N. G., Olala, L. O., Bollag, W. B., & Rainey, W. E. (2012). Acute and chronic regulation of aldosterone production. Molecular and Cellular Endocrinology, 350, 151–162.CrossRefPubMedGoogle Scholar
  48. Haupt, D. W., Luber, A., Maeda, J., Melson, A. K., Schweiger, J. A., & Newcomer, J. W. (2005). Plasma leptin and adiposity during antipsychotic treatment of schizophrenia. Neuropsychopharmacology, 30, 184–191.CrossRefPubMedGoogle Scholar
  49. Havel, P. J., Kasim-Karakas, S., Dubuc, G. R., Mueller, W., & Phinney, S. D. (1996). Gender differences in plasma leptin concentrations. Nature Medicine, 2, 949–950.CrossRefPubMedGoogle Scholar
  50. Hay, M. (2016). Sex, the brain and hypertension: Brain oestrogen receptors and high blood pressure risk factors. Clinical Science, 130, 9–18.CrossRefPubMedGoogle Scholar
  51. Haynes, W. G., Morgan, D. A., Walsh, S. A., Mark, A. L., & Sivitz, W. I. (1997a). Receptor-mediated regional sympathetic nerve activation by leptin. The Journal of Clinical Investigation, 100, 270–278.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Haynes, W. G., Sivitz, W. I., Morgan, D. A., Walsh, S. A., & Mark, A. L. (1997b). Sympathetic and cardiorenal actions of leptin. Hypertension, 30, 619–623.CrossRefPubMedGoogle Scholar
  53. Hellstrom, L., Wahrenberg, H., Hruska, K., Reynisdottir, S., & Arner, P. (2000). Mechanisms behind gender differences in circulating leptin levels. Journal of Internal Medicine, 247, 457–462.CrossRefPubMedGoogle Scholar
  54. Hickey, M. S., Israel, R. G., Gardiner, S. N., Considine, R. V., Mccammon, M. R., Tyndall, G. L., Houmard, J. A., Marks, R. H., & Caro, J. F. (1996). Gender differences in serum leptin levels in humans. Biochemical and Molecular Medicine, 59, 1–6.CrossRefPubMedGoogle Scholar
  55. Hinojosa-Laborde, C., Chapa, I., Lange, D., & Haywood, J. R. (1999). Gender differences in sympathetic nervous system regulation. Clinical and Experimental Pharmacology & Physiology, 26, 122–126.CrossRefGoogle Scholar
  56. Hirose, H., Saito, I., Tsujioka, M., Mori, M., Kawabe, H., & Saruta, T. (1998). The obese gene product, leptin: Possible role in obesity-related hypertension in adolescents. Journal of Hypertension, 16, 2007–2012.CrossRefPubMedGoogle Scholar
  57. Hogarth, A. J., Mackintosh, A. F., & Mary, D. A. (2007). Gender-related differences in the sympathetic vasoconstrictor drive of normal subjects. Clinical Science (London, England), 112, 353–361.CrossRefGoogle Scholar
  58. Huby, A.-C., Antonova, G., Groenendyk, J., Gomez-Sanchez, C. E., Bollag, W. B., Filosa, J. A., & Belin de Chantemèle, E. J. (2015). The adipocyte-derived hormone leptin is a direct regulator of aldosterone secretion, which promotes endothelial dysfunction and cardiac fibrosis. Circulation, 132, 2134–2145.CrossRefPubMedGoogle Scholar
  59. Huby, A.-C., Otvos, L., & Belin de Chantemèle, E. J. (2016). Leptin induces hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in obese female mice. Hypertension, 67, 1020–1028.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Itoh, K., Imai, K., Masuda, T., Abe, S., Tanaka, M., Koga, R., Itoh, H., Matsuyama, T., & Nakamura, M. (2002). Relationship between changes in serum leptin levels and blood pressure after weight loss. Hypertension Research, 25, 881–886.CrossRefPubMedGoogle Scholar
  61. Jackson, E. K., & Li, P. (1997). Human leptin has natriuretic activity in the rat. The American Journal of Physiology, 272, F333–F338.CrossRefPubMedGoogle Scholar
  62. Jockenhovel, F., Blum, W. F., Vogel, E., Englaro, P., Muller-Wieland, D., Reinwein, D., Rascher, W., & Krone, W. (1997). Testosterone substitution normalizes elevated serum leptin levels in hypogonadal men. The Journal of Clinical Endocrinology and Metabolism, 82, 2510–2513.CrossRefPubMedGoogle Scholar
  63. Jones, P. P., Snitker, S., Skinner, J. S., & Ravussin, E. (1996). Gender differences in muscle sympathetic nerve activity: Effect of body fat distribution. The American Journal of Physiology, 270, E363–E366.PubMedGoogle Scholar
  64. Kanashiro-Takeuchi, R. M., Heidecker, B., Lamirault, G., Dharamsi, J. W., & Hare, J. M. (2009). Sex-specific impact of aldosterone receptor antagonism on ventricular remodeling and gene expression after myocardial infarction. Clinical and Translational Science, 2, 134–142.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Kassab, S., Kato, T., Wilkins, F. C., Chen, R., Hall, J. E., & Granger, J. P. (1995). Renal denervation attenuates the sodium retention and hypertension associated with obesity. Hypertension, 25, 893–897.CrossRefPubMedGoogle Scholar
  66. Kennedy, A., Gettys, T. W., Watson, P., Wallace, P., Ganaway, E., Pan, Q., & Garvey, W. T. (1997). The metabolic significance of leptin in humans: Gender-based differences in relationship to adiposity, insulin sensitivity, and energy expenditure. The Journal of Clinical Endocrinology and Metabolism, 82, 1293–1300.PubMedGoogle Scholar
  67. Khokhar, K. K., Sidhu, S., & Kaur, G. (2010). Correlation between leptin level and hypertension in normal and obese pre- and postmenopausal women. European Journal of Endocrinology, 163, 873–878.CrossRefPubMedGoogle Scholar
  68. Kimura, K., Tsuda, K., Baba, A., Kawabe, T., Boh-Oka, S., Ibata, M., Moriwaki, C., Hano, T., & Nishio, I. (2000). Involvement of nitric oxide in endothelium-dependent arterial relaxation by leptin. Biochemical and Biophysical Research Communications, 273, 745–749.CrossRefPubMedGoogle Scholar
  69. Kuo, J. J., Jones, O. B., & Hall, J. E. (2001). Inhibition of NO synthesis enhances chronic cardiovascular and renal actions of leptin. Hypertension, 37, 670–676.CrossRefPubMedGoogle Scholar
  70. Lambert, E., Straznicky, N., Eikelis, N., Esler, M., Dawood, T., Masuo, K., Schlaich, M., & Lambert, G. (2007). Gender differences in sympathetic nervous activity: Influence of body mass and blood pressure. Journal of Hypertension, 25, 1411–1419.CrossRefPubMedGoogle Scholar
  71. Lembo, G., Vecchione, C., Fratta, L., Marino, G., Trimarco, V., D’Amati, G., & Trimarco, B. (2000). Leptin induces direct vasodilation through distinct endothelial mechanisms. Diabetes, 49, 293–297.CrossRefPubMedGoogle Scholar
  72. Licinio, J., Negrao, A. B., Mantzoros, C., Kaklamani, V., Wong, M. L., Bongiorno, P. B., Negro, P. P., Mulla, A., Veldhuis, J. D., Cearnal, L., Flier, J. S., & Gold, P. W. (1998). Sex differences in circulating human leptin pulse amplitude: Clinical implications. The Journal of Clinical Endocrinology and Metabolism, 83, 4140–4147.PubMedGoogle Scholar
  73. Liu, Y., Lou, Y. Q., Liu, K., Liu, J. L., Wang, Z. G., Wen, J., Zhao, Q., Wen, S. J., & Xiao, L. (2014). Role of leptin receptor gene polymorphisms in susceptibility to the development of essential hypertension: A case-control association study in a Northern Han Chinese population. Journal of Human Hypertension, 28, 551–556.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Lonnqvist, F., Arner, P., Nordfors, L., & Schalling, M. (1995). Overexpression of the obese (ob) gene in adipose tissue of human obese subjects. Nature Medicine, 1, 950–953.CrossRefPubMedGoogle Scholar
  75. Ma, D., Feitosa, M. F., Wilk, J. B., Laramie, J. M., Yu, K., Leiendecker-Foster, C., Myers, R. H., Province, M. A., & Borecki, I. B. (2009). Leptin is associated with blood pressure and hypertension in women from the National Heart, Lung, and Blood Institute Family Heart Study. Hypertension, 53, 473–479.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Machleidt, F., Simon, P., Krapalis, A. F., Hallschmid, M., Lehnert, H., & Sayk, F. (2013). Experimental hyperleptinemia acutely increases vasoconstrictory sympathetic nerve activity in healthy humans. The Journal of Clinical Endocrinology and Metabolism, 98, E491–E496.CrossRefPubMedGoogle Scholar
  77. Mackintosh, R. M., & Hirsch, J. (2001). The effects of leptin administration in non-obese human subjects. Obesity Research, 9, 462–469.CrossRefPubMedGoogle Scholar
  78. Maffei, M., Halaas, J., Ravussin, E., Pratley, R. E., Lee, G. H., Zhang, Y., Fei, H., Kim, S., Lallone, R., Ranganathan, S., et al. (1995). Leptin levels in human and rodent: Measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nature Medicine, 1, 1155–1161.CrossRefPubMedGoogle Scholar
  79. Mallamaci, F., Cxuzzola, F., Tripepi, G., Cutrupi, S., Parlongo, S., Tripepi, R., & Zoccali, C. (2000). Gender-dependent differences in plasma leptin in essential hypertension. American Journal of Hypertension, 13, 914–920.CrossRefPubMedGoogle Scholar
  80. Mark, A. L. (2013). Selective leptin resistance revisited. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 305, R566–R581.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Mark, A. L., Shaffer, R. A., Correia, M. L., Morgan, D. A., Sigmund, C. D., & Haynes, W. G. (1999). Contrasting blood pressure effects of obesity in leptin-deficient ob/ob mice and agouti yellow obese mice. Journal of Hypertension, 17, 1949–1953.CrossRefPubMedGoogle Scholar
  82. Mark, A. L., Agassandian, K., Morgan, D. A., Liu, X., Cassell, M. D., & Rahmouni, K. (2009). Leptin signaling in the nucleus tractus solitarii increases sympathetic nerve activity to the kidney. Hypertension, 53, 375–380.CrossRefPubMedGoogle Scholar
  83. Martin, L. J., Mahaney, M. C., Almasy, L., Maccluer, J. W., Blangero, J., Jaquish, C. E., & Comuzzie, A. G. (2002). Leptin’s sexual dimorphism results from genotype by sex interactions mediated by testosterone. Obesity Research, 10, 14–21.CrossRefPubMedGoogle Scholar
  84. Masuzaki, H., Ogawa, Y., Isse, N., Satoh, N., Okazaki, T., Shigemoto, M., Mori, K., Tamura, N., Hosoda, K., Yoshimasa, Y., et al. (1995). Human obese gene expression. Adipocyte-specific expression and regional differences in the adipose tissue. Diabetes, 44, 855–858.CrossRefPubMedGoogle Scholar
  85. Matsuda, K., Teragawa, H., Fukuda, Y., Nakagawa, K., Higashi, Y., & Chayama, K. (2003). Leptin causes nitric-oxide independent coronary artery vasodilation in humans. Hypertension Research, 26, 147–152.CrossRefPubMedGoogle Scholar
  86. Matsukawa, T., Sugiyama, Y., Watanabe, T., Kobayashi, F., & Mano, T. (1998). Gender difference in age-related changes in muscle sympathetic nerve activity in healthy subjects. The American Journal of Physiology, 275, R1600–R1604.PubMedGoogle Scholar
  87. Matsumoto, T., Miyatsuji, A., Miyawaki, T., Yanagimoto, Y., & Moritani, T. (2003). Potential association between endogenous leptin and sympatho-vagal activities in young obese Japanese women. American Journal of Human Biology, 15, 8–15.CrossRefPubMedGoogle Scholar
  88. Messina, G., De Luca, V., Viggiano, A., Ascione, A., Iannaccone, T., Chieffi, S., & Monda, M. (2013). Autonomic nervous system in the control of energy balance and body weight: Personal contributions. Neurology Research International, 2013, 639280.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Mitchell, J. L., Morgan, D. A., Correia, M. L. G., Mark, A. L., Sivitz, W. I., & Haynes, W. G. (2001). Does leptin stimulate nitric oxide to oppose the effects of sympathetic activation? Hypertension, 38, 1081–1086.CrossRefPubMedGoogle Scholar
  90. Montague, C. T., Prins, J. B., Sanders, L., Digby, J. E., & O’Rahilly, S. (1997). Depot- and sex-specific differences in human leptin mRNA expression: Implications for the control of regional fat distribution. Diabetes, 46, 342–347.CrossRefPubMedGoogle Scholar
  91. Nagy, T. R., Gower, B. A., Trowbridge, C. A., Dezenberg, C., Shewchuk, R. M., & Goran, M. I. (1997). Effects of gender, ethnicity, body composition, and fat distribution on serum leptin concentrations in children. The Journal of Clinical Endocrinology and Metabolism, 82, 2148–2152.PubMedGoogle Scholar
  92. Nakagawa, K., Higashi, Y., Sasaki, S., Oshima, T., Matsuura, H., & Chayama, K. (2002). Leptin causes vasodilation in humans. Hypertension Research, 25, 161–165.CrossRefPubMedGoogle Scholar
  93. Narkiewicz, K., Kato, M., Phillips, B. G., Pesek, C. A., Choe, I., Winnicki, M., Palatini, P., Sivitz, W. I., & Somers, V. K. (2001). Leptin interacts with heart rate but not sympathetic nerve traffic in healthy male subjects. Journal of Hypertension, 19, 1089–1094.CrossRefPubMedGoogle Scholar
  94. Neugarten, J., Ding, Q., Friedman, A., Lei, J., & Silbiger, S. (1997). Sex hormones and renal nitric oxide synthases. Journal of the American Society of Nephrology, 8, 1240–1246.PubMedGoogle Scholar
  95. Ostlund, R. E., Jr., Yang, J. W., Klein, S., & Gingerich, R. (1996). Relation between plasma leptin concentration and body fat, gender, diet, age, and metabolic covariates. The Journal of Clinical Endocrinology and Metabolism, 81, 3909–3913.PubMedGoogle Scholar
  96. Ozata, M., Ozdemir, I. C., & Licinio, J. (1999). Human leptin deficiency caused by a missense mutation: Multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. The Journal of Clinical Endocrinology and Metabolism, 84, 3686–3695.CrossRefPubMedGoogle Scholar
  97. Paolisso, G., Rizzo, M. R., Mone, C. M., Tagliamonte, M. R., Gambardella, A., Riondino, M., Carella, C., Varricchio, M., & D’Onofrio, F. (1998). Plasma sex hormones are significantly associated with plasma leptin concentration in healthy subjects. Clinical Endocrinology, 48, 291–297.CrossRefPubMedGoogle Scholar
  98. Pelleymounter, M. A., Cullen, M. J., Baker, M. B., Hecht, R., Winters, D., Boone, T., & Collins, F. (1995). Effects of the obese gene product on body weight regulation in ob/ob mice. Science, 269, 540–543.CrossRefPubMedGoogle Scholar
  99. Rahmouni, K., & Morgan, D. A. (2007). Hypothalamic arcuate nucleus mediates the sympathetic and arterial pressure responses to leptin. Hypertension, 49, 647–652.CrossRefPubMedGoogle Scholar
  100. Rahmouni, K., Jalali, A., Morgan, D. A., & Haynes, W. G. (2005). Lack of dilator effect of leptin in the hindlimb vascular bed of conscious rats. European Journal of Pharmacology, 518, 175–181.CrossRefPubMedGoogle Scholar
  101. Reckelhoff, J. F., Hennington, B. S., Moore, A. G., Blanchard, E. J., & Cameron, J. (1998). Gender differences in the renal nitric oxide (NO) system: Dissociation between expression of endothelial NO synthase and renal hemodynamic response to NO synthase inhibition. American Journal of Hypertension, 11, 97–104.CrossRefPubMedGoogle Scholar
  102. Rocchini, A. P., Katch, V. L., Grekin, R., Moorehead, C., & Anderson, J. (1986). Role for aldosterone in blood pressure regulation of obese adolescents. The American Journal of Cardiology, 57, 613–618.CrossRefPubMedGoogle Scholar
  103. Rocchini, A. P., Mao, H. Z., Babu, K., Marker, P., & Rocchini, A. J. (1999). Clonidine prevents insulin resistance and hypertension in obese dogs. Hypertension, 33, 548–553.CrossRefPubMedGoogle Scholar
  104. Roemmich, J. N., Clark, P. A., Berr, S. S., Mai, V., Mantzoros, C. S., Flier, J. S., Weltman, A., & Rogol, A. D. (1998). Gender differences in leptin levels during puberty are related to the subcutaneous fat depot and sex steroids. The American Journal of Physiology, 275, E543–E551.PubMedGoogle Scholar
  105. Rosmond, R., Chagnon, Y. C., Holm, G., Chagnon, M., Perusse, L., Lindell, K., Carlsson, B., Bouchard, C., & Bjorntorp, P. (2000). Hypertension in obesity and the leptin receptor gene locus. The Journal of Clinical Endocrinology and Metabolism, 85, 3126–3131.PubMedGoogle Scholar
  106. Saad, M. F., Damani, S., Gingerich, R. L., Riad-Gabriel, M. G., Khan, A., Boyadjian, R., Jinagouda, S. D., El-Tawil, K., Rude, R. K., & Kamdar, V. (1997). Sexual dimorphism in plasma leptin concentration. The Journal of Clinical Endocrinology and Metabolism, 82, 579–584.PubMedGoogle Scholar
  107. Safar, M. E., Balkau, B., Lange, C., Protogerou, A. D., Czernichow, S., Blacher, J., Levy, B. I., & Smulyan, H. (2013). Hypertension and vascular dynamics in men and women with metabolic syndrome. Journal of the American College of Cardiology, 61, 12–19.CrossRefPubMedGoogle Scholar
  108. Satoh, N., Ogawa, Y., Katsuura, G., Numata, Y., Tsuji, T., Hayase, M., Ebihara, K., Masuzaki, H., Hosoda, K., Yoshimasa, Y., & Nakao, K. (1999). Sympathetic activation of leptin via the ventromedial hypothalamus: Leptin-induced increase in catecholamine secretion. Diabetes, 48, 1787–1793.CrossRefPubMedGoogle Scholar
  109. Sayk, F., Heutling, D., Dodt, C., Iwen, K. A., Wellhoner, J. P., Scherag, S., Hinney, A., Hebebrand, J., & Lehnert, H. (2010). Sympathetic function in human carriers of melanocortin-4 receptor gene mutations. The Journal of Clinical Endocrinology and Metabolism, 95, 1998–2002.CrossRefPubMedGoogle Scholar
  110. Scherrer, U., Randin, D., Tappy, L., Vollenweider, P., Jequier, E., & Nicod, P. (1994). Body fat and sympathetic nerve activity in healthy subjects. Circulation, 89, 2634–2640.CrossRefPubMedGoogle Scholar
  111. Schunkert, H., Danser, A. H., Hense, H. W., Derkx, F. H., Kurzinger, S., & Riegger, G. A. (1997). Effects of estrogen replacement therapy on the renin-angiotensin system in postmenopausal women. Circulation, 95, 39–45.CrossRefPubMedGoogle Scholar
  112. Schwartz, M. W., Peskind, E., Raskind, M., Boyko, E. J., & Porte, D., Jr. (1996). Cerebrospinal fluid leptin levels: Relationship to plasma levels and to adiposity in humans. Nature Medicine, 2, 589–593.CrossRefPubMedGoogle Scholar
  113. Serradeil-le Gal, C., Raufaste, D., Brossard, G., Pouzet, B., Marty, E., Maffrand, J. P., & Le Fur, G. (1997). Characterization and localization of leptin receptors in the rat kidney. FEBS Letters, 404, 185–191.CrossRefPubMedGoogle Scholar
  114. Shankar, A., & Xiao, J. (2010). Positive relationship between plasma leptin level and hypertension. Hypertension, 56, 623–628.CrossRefPubMedGoogle Scholar
  115. Shek, E. W., Brands, M. W., & Hall, J. E. (1998). Chronic leptin infusion increases arterial pressure. Hypertension, 31, 409–414.CrossRefPubMedGoogle Scholar
  116. Sheu, W. H., Lee, W. J., & Chen, Y. T. (1999). High plasma leptin concentrations in hypertensive men but not in hypertensive women. Journal of Hypertension, 17, 1289–1295.CrossRefPubMedGoogle Scholar
  117. Shi, Z., & Brooks, V. L. (2015). Leptin differentially increases sympathetic nerve activity and its baroreflex regulation in female rats: Role of oestrogen. The Journal of Physiology, 593, 1633–1647.CrossRefPubMedGoogle Scholar
  118. Sierra-Honigmann, M. R., Nath, A. K., Murakami, C., Garcia-Cardena, G., Papapetropoulos, A., Sessa, W. C., Madge, L. A., Schechner, J. S., Schwabb, M. B., Polverini, P. J., & Flores-Riveros, J. R. (1998). Biological action of leptin as an angiogenic factor. Science, 281, 1683–1686.CrossRefPubMedGoogle Scholar
  119. Simonds, S. E., Pryor, J. T., Ravussin, E., Greenway, F. L., Dileone, R., Allen, A. M., Bassi, J., Elmquist, J. K., Keogh, J. M., Henning, E., Myers, M. G., Jr., Licinio, J., Brown, R. D., Enriori, P. J., O’Rahilly, S., Sternson, S. M., Grove, K. L., Spanswick, D. C., Farooqi, I. S., & Cowley, M. A. (2014). Leptin mediates the increase in blood pressure associated with obesity. Cell, 159, 1404–1416.CrossRefPubMedPubMedCentralGoogle Scholar
  120. Snitker, S., Pratley, R. E., Nicolson, M., Tataranni, P. A., & Ravussin, E. (1997). Relationship between muscle sympathetic nerve activity and plasma leptin concentration. Obesity Research, 5, 338–340.CrossRefPubMedGoogle Scholar
  121. Tank, J., Heusser, K., Diedrich, A., Hering, D., Luft, F. C., Busjahn, A., Narkiewicz, K., & Jordan, J. (2008). Influences of gender on the interaction between sympathetic nerve traffic and central adiposity. The Journal of Clinical Endocrinology and Metabolism, 93, 4974–4978.CrossRefPubMedPubMedCentralGoogle Scholar
  122. Thomas, T., Burguera, B., Melton, L. J., 3rd, Atkinson, E. J., O’Fallon, W. M., Riggs, B. L., & Khosla, S. (2000). Relationship of serum leptin levels with body composition and sex steroid and insulin levels in men and women. Metabolism, 49, 1278–1284.CrossRefPubMedGoogle Scholar
  123. Van Harmelen, V., Reynisdottir, S., Eriksson, P., Thorne, A., Hoffstedt, J., Lonnqvist, F., & Arner, P. (1998). Leptin secretion from subcutaneous and visceral adipose tissue in women. Diabetes, 47, 913–917.CrossRefPubMedGoogle Scholar
  124. Vasan, R. S., Evans, J. C., Benjamin, E. J., Levy, D., Larson, M. G., Sundstrom, J., Murabito, J. M., Sam, F., Colucci, W. S., & Wilson, P. W. F. (2004). Relations of serum aldosterone to cardiac structure. Hypertension, 43, 957–962.CrossRefPubMedGoogle Scholar
  125. Vaz, M., Jennings, G., Turner, A., Cox, H., Lambert, G., & Esler, M. (1997). Regional sympathetic nervous activity and oxygen consumption in obese normotensive human subjects. Circulation, 96, 3423–3429.CrossRefPubMedGoogle Scholar
  126. Villarreal, D., Reams, G., Freeman, R. H., & Taraben, A. (1998). Renal effects of leptin in normotensive, hypertensive, and obese rats. The American Journal of Physiology, 275, R2056–R2060.PubMedGoogle Scholar
  127. Villarreal, D., Reams, G., & Freeman, R. H. (2000). Effects of renal denervation on the sodium excretory actions of leptin in hypertensive rats. Kidney International, 58, 989–994.CrossRefPubMedGoogle Scholar
  128. Villarreal, D., Reams, G., Samar, H., Spear, R., & Freeman, R. H. (2004). Effects of chronic nitric oxide inhibition on the renal excretory response to leptin. Obesity Research, 12, 1006–1010.CrossRefPubMedGoogle Scholar
  129. Villarreal, D., Reams, G., Freeman, R., Spear, R., Tchoukina, I., & Samar, H. (2006). Leptin blockade attenuates sodium excretion in saline-loaded normotensive rats. Molecular and Cellular Biochemistry, 283, 153–157.CrossRefPubMedGoogle Scholar
  130. Zabolotny, J. M., Bence-Hanulec, K. K., Stricker-Krongrad, A., Haj, F., Wang, Y., Minokoshi, Y., Kim, Y. B., Elmquist, J. K., Tartaglia, L. A., Kahn, B. B., & Neel, B. G. (2002). PTP1B regulates leptin signal transduction in vivo. Developmental Cell, 2, 489–495.CrossRefPubMedGoogle Scholar
  131. Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., & Friedman, J. M. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature, 372, 425–432.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Vascular Biology CenterMedical College of Georgia at Augusta UniversityAugustaUSA

Personalised recommendations