Prenatal Testosterone Programming of Insulin Resistance in the Female Sheep

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1043)

Abstract

Insulin resistance, a common feature of metabolic disorders such as obesity, nonalcoholic fatty liver disease, metabolic syndrome, and polycystic ovary syndrome, is a risk factor for development of diabetes. Because sex hormones orchestrate the establishment of sex-specific behavioral, reproductive, and metabolic differences, a role for them in the developmental origin of insulin resistance is also to be expected. Female sheep exposed to male levels of testosterone during fetal life serve as an excellent translational model for delineating programming of insulin resistance. This chapter summarizes the ontogeny of insulin resistance, the tissue-specific changes in insulin sensitivity, and the various factors that are involved in the programming and maintenance of the insulin resistance in adult female sheep that were developmentally exposed to fetal male levels of testosterone during the sexual-differentiation window.

Keywords

Testosterone Developmental Programming Insulin Resistance Adiponectin Oxidative Stress Inflammation Lipotoxicity Sheep 

Notes

Funding Support

This work was supported by NIH P01 HD44232.

Disclosure Statement

The authors have nothing to disclose.

References

  1. Abbott, D. H., Nicol, L. E., Levine, J. E., Xu, N., Goodarzi, M. O., & Dumesic, D. A. (2013). Nonhuman primate models of polycystic ovary syndrome. Molecular and Cellular Endocrinology, 373(1–2), 21–28.  https://doi.org/10.1016/j.mce.2013.01.013.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abel, E. D. (2004). Glucose transport in the heart. Frontiers in Bioscience, 9, 201–215.CrossRefPubMedGoogle Scholar
  3. Achari, A. E., & Jain, S. K. (2017). Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. International Journal of Molecular Sciences, 18(6).  https://doi.org/10.3390/ijms18061321.
  4. Aguilar, M., Bhuket, T., Torres, S., Liu, B., & Wong, R. J. (2015). Prevalence of the metabolic syndrome in the United States, 2003–2012. JAMA, 313(19), 1973–1974.  https://doi.org/10.1001/jama.2015.4260.CrossRefPubMedGoogle Scholar
  5. Azziz, R., Carmina, E., Dewailly, D., Diamanti-Kandarakis, E., Escobar-Morreale, H. F., Futterweit, W., Janssen, O. E., Legro, R. S., Norman, R. J., Taylor, A. E., Witchel, S. F., & Androgen Excess, S. (2006). Positions statement: Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: An Androgen Excess Society guideline. The Journal of Clinical Endocrinology and Metabolism, 91(11), 4237–4245.  https://doi.org/10.1210/jc.2006-0178.CrossRefPubMedGoogle Scholar
  6. Barker, D. J. (2004). The developmental origins of adult disease. Journal of the American College of Nutrition, 23(6 Suppl), 588S–595S.CrossRefPubMedGoogle Scholar
  7. Barry, J. S., & Anthony, R. V. (2008). The pregnant sheep as a model for human pregnancy. Theriogenology, 69(1), 55–67.  https://doi.org/10.1016/j.theriogenology.2007.09.021.CrossRefPubMedGoogle Scholar
  8. Bashan, N., Kovsan, J., Kachko, I., Ovadia, H., & Rudich, A. (2009). Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiological Reviews, 89(1), 27–71.  https://doi.org/10.1152/physrev.00014.2008.CrossRefPubMedGoogle Scholar
  9. Beck-Peccoz, P., Padmanabhan, V., Baggiani, A. M., Cortelazzi, D., Buscaglia, M., Medri, G., Marconi, A. M., Pardi, G., & Beitins, I. Z. (1991). Maturation of hypothalamic-pituitary-gonadal function in normal human fetuses: Circulating levels of gonadotropins, their common alpha-subunit and free testosterone, and discrepancy between immunological and biological activities of circulating follicle-stimulating hormone. The Journal of Clinical Endocrinology and Metabolism, 73(3), 525–532.  https://doi.org/10.1210/jcem-73-3-525.CrossRefPubMedGoogle Scholar
  10. Boonyaratanakornkit, V., & Pateetin, P. (2015). The role of ovarian sex steroids in metabolic homeostasis, obesity, and postmenopausal breast cancer: Molecular mechanisms and therapeutic implications. BioMed Research International, 2015, 140196.  https://doi.org/10.1155/2015/140196.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bramble, M. S., Roach, L., Lipson, A., Vashist, N., Eskin, A., Ngun, T., Gosschalk, J. E., Klein, S., Barseghyan, H., Arboleda, V. A., & Vilain, E. (2016). Sex-specific effects of testosterone on the sexually dimorphic transcriptome and epigenome of embryonic neural stem/progenitor cells. Scientific Reports, 6, 36916.  https://doi.org/10.1038/srep36916.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brons, C., & Grunnet, L. G. (2017). Mechanisms in Endocrinology: Skeletal muscle lipotoxicity in insulin resistance and type 2 diabetes: a causal mechanism or an innocent bystander? European Journal of Endocrinology/European Federation of Endocrine Societies, 176(2), R67–R78.  https://doi.org/10.1530/EJE-16-0488.CrossRefGoogle Scholar
  13. Cardoso, R. C., Puttabyatappa, M., & Padmanabhan, V. (2015). Steroidogenic versus metabolic programming of reproductive neuroendocrine, ovarian and metabolic dysfunctions. Neuroendocrinology, 102(3), 226–237.  https://doi.org/10.1159/000381830.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cardoso, R. C., Veiga-Lopez, A., Moeller, J., Beckett, E., Pease, A., Keller, E., Madrigal, V., Chazenbalk, G., Dumesic, D., & Padmanabhan, V. (2016). Developmental programming: Impact of gestational steroid and metabolic milieus on adiposity and insulin sensitivity in prenatal testosterone-treated female sheep. Endocrinology, 157(2), 522–535.  https://doi.org/10.1210/en.2015-1565.CrossRefPubMedGoogle Scholar
  15. Caselli, C. (2014). Role of adiponectin system in insulin resistance. Molecular Genetics and Metabolism, 113(3), 155–160.  https://doi.org/10.1016/j.ymgme.2014.09.003.CrossRefPubMedGoogle Scholar
  16. Clarke, I. J. (1992). What can we learn from sampling hypophysial portal blood? Ciba Foundation Symposium, 168, 87–95. discussion 95–103.PubMedGoogle Scholar
  17. Crespi, E. J., Steckler, T. L., Mohankumar, P. S., & Padmanabhan, V. (2006). Prenatal exposure to excess testosterone modifies the developmental trajectory of the insulin-like growth factor system in female sheep. The Journal of Physiology, 572(Pt 1), 119–130.  https://doi.org/10.1113/jphysiol.2005.103929.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Deeming, D. C., & Ferguson, M. W. J. (1989). The mechanism of temperature dependent sex determination in crocodilians: A hypothesis1. American Zoologist, 29(3), 973–985.  https://doi.org/10.1093/icb/29.3.973.CrossRefGoogle Scholar
  19. Dimitriadis, G., Mitrou, P., Lambadiari, V., Maratou, E., & Raptis, S. A. (2011). Insulin effects in muscle and adipose tissue. Diabetes Research and Clinical Practice, 93(Suppl 1), S52–S59.  https://doi.org/10.1016/S0168-8227(11)70014-6.CrossRefPubMedGoogle Scholar
  20. Ertunc, M. E., & Hotamisligil, G. S. (2016). Lipid signaling and lipotoxicity in metaflammation: Indications for metabolic disease pathogenesis and treatment. Journal of Lipid Research, 57(12), 2099–2114.  https://doi.org/10.1194/jlr.R066514.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Esser, N., Legrand-Poels, S., Piette, J., Scheen, A. J., & Paquot, N. (2014). Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Research and Clinical Practice, 105(2), 141–150.  https://doi.org/10.1016/j.diabres.2014.04.006.CrossRefPubMedGoogle Scholar
  22. Flegal, K. M., Kruszon-Moran, D., Carroll, M. D., Fryar, C. D., & Ogden, C. L. (2016). Trends in obesity among adults in the United States, 2005 to 2014. JAMA, 315(21), 2284–2291.  https://doi.org/10.1001/jama.2016.6458.CrossRefPubMedGoogle Scholar
  23. Fu, Y. (2014). Adiponectin signaling and metabolic syndrome. Progress in Molecular Biology and Translational Science, 121, 293–319.  https://doi.org/10.1016/B978-0-12-800101-1.00009-0.CrossRefPubMedGoogle Scholar
  24. Hanson, M., & Gluckman, P. (2011). Developmental origins of noncommunicable disease: Population and public health implications. The American Journal of Clinical Nutrition, 94(6 Suppl), 1754S–1758S.  https://doi.org/10.3945/ajcn.110.001206.CrossRefPubMedGoogle Scholar
  25. Hogg, K., Wood, C., McNeilly, A. S., & Duncan, W. C. (2011). The in utero programming effect of increased maternal androgens and a direct fetal intervention on liver and metabolic function in adult sheep. PLoS One, 6(9), e24877.  https://doi.org/10.1371/journal.pone.0024877.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jones, H., Sprung, V. S., Pugh, C. J., Daousi, C., Irwin, A., Aziz, N., Adams, V. L., Thomas, E. L., Bell, J. D., Kemp, G. J., & Cuthbertson, D. J. (2012). Polycystic ovary syndrome with hyperandrogenism is characterized by an increased risk of hepatic steatosis compared to nonhyperandrogenic PCOS phenotypes and healthy controls, independent of obesity and insulin resistance. The Journal of Clinical Endocrinology and Metabolism, 97(10), 3709–3716.  https://doi.org/10.1210/jc.2012-1382.CrossRefPubMedGoogle Scholar
  27. Jost, A. (1983). Genetic and hormonal factors in sex differentiation of the brain. Psychoneuroendocrinology, 8(2), 183–193.CrossRefPubMedGoogle Scholar
  28. Kadowaki, T., & Yamauchi, T. (2005). Adiponectin and adiponectin receptors. Endocrine Reviews, 26(3), 439–451.  https://doi.org/10.1210/er.2005-0005.CrossRefPubMedGoogle Scholar
  29. Kahn, B. B., & Flier, J. S. (2000). Obesity and insulin resistance. The Journal of Clinical Investigation, 106(4), 473–481.  https://doi.org/10.1172/JCI10842.CrossRefPubMedPubMedCentralGoogle Scholar
  30. King, A. J., Olivier, N. B., Mohankumar, P. S., Lee, J. S., Padmanabhan, V., & Fink, G. D. (2007). Hypertension caused by prenatal testosterone excess in female sheep. American Journal of Physiology Endocrinology and Metabolism, 292(6), E1837–E1841.  https://doi.org/10.1152/ajpendo.00668.2006.CrossRefPubMedGoogle Scholar
  31. Liu, Y., & Sweeney, G. (2014). Adiponectin action in skeletal muscle. Best Practice & Research Clinical Endocrinology & Metabolism, 28(1), 33–41.  https://doi.org/10.1016/j.beem.2013.08.003.CrossRefGoogle Scholar
  32. Liu, W., Baker, R. D., Bhatia, T., Zhu, L., & Baker, S. S. (2016). Pathogenesis of nonalcoholic steatohepatitis. Cellular and Molecular Life Sciences, 73(10), 1969–1987.  https://doi.org/10.1007/s00018-016-2161-x.CrossRefPubMedGoogle Scholar
  33. Livingstone, C., & Collison, M. (2002). Sex steroids and insulin resistance. Clinical Science (London, England), 102(2), 151–166.CrossRefGoogle Scholar
  34. Lu, C., Cardoso, R. C., Puttabyatappa, M., & Padmanabhan, V. (2016). Developmental programming: Prenatal testosterone excess and insulin signaling disruptions in female sheep. Biology of Reproduction, 94(5), 113.  https://doi.org/10.1095/biolreprod.115.136283.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lucas, A. (1991). Programming by early nutrition in man. Ciba Foundation Symposium, 156, 38–50. discussion 50–35.PubMedGoogle Scholar
  36. Macut, D., Bjekic-Macut, J., & Savic-Radojevic, A. (2013). Dyslipidemia and oxidative stress in PCOS. Frontiers of Hormone Research, 40, 51–63.  https://doi.org/10.1159/000341683.PubMedGoogle Scholar
  37. Manikkam, M., Crespi, E. J., Doop, D. D., Herkimer, C., Lee, J. S., Yu, S., Brown, M. B., Foster, D. L., & Padmanabhan, V. (2004). Fetal programming: Prenatal testosterone excess leads to fetal growth retardation and postnatal catch-up growth in sheep. Endocrinology, 145(2), 790–798.  https://doi.org/10.1210/en.2003-0478.CrossRefPubMedGoogle Scholar
  38. Mauvais-Jarvis, F. (2015). Sex differences in metabolic homeostasis, diabetes, and obesity. Biology of Sex Differences, 6, 14.  https://doi.org/10.1186/s13293-015-0033-y.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Meisel, R. L., & Ward, I. L. (1981). Fetal female rats are masculinized by male littermates located caudally in the uterus. Science, 213(4504), 239–242.CrossRefPubMedGoogle Scholar
  40. Melo, A. S., Vieira, C. S., Barbieri, M. A., Rosa, E. S. A. C., Silva, A. A., Cardoso, V. C., Reis, R. M., Ferriani, R. A., Silva-de-Sa, M. F., & Bettiol, H. (2010). High prevalence of polycystic ovary syndrome in women born small for gestational age. Human Reproduction, 25(8), 2124–2131.  https://doi.org/10.1093/humrep/deq162.CrossRefPubMedGoogle Scholar
  41. Menke, A., Casagrande, S., Geiss, L., & Cowie, C. C. (2015). Prevalence of and trends in diabetes among adults in the United States, 1988–2012. JAMA, 314(10), 1021–1029.  https://doi.org/10.1001/jama.2015.10029.CrossRefPubMedGoogle Scholar
  42. Moran, L. J., Norman, R. J., & Teede, H. J. (2015). Metabolic risk in PCOS: Phenotype and adiposity impact. Trends in Endocrinology and Metabolism, 26(3), 136–143.  https://doi.org/10.1016/j.tem.2014.12.003.CrossRefPubMedGoogle Scholar
  43. Morishima, A., Grumbach, M. M., Simpson, E. R., Fisher, C., & Qin, K. (1995). Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. The Journal of Clinical Endocrinology and Metabolism, 80(12), 3689–3698.  https://doi.org/10.1210/jcem.80.12.8530621.PubMedGoogle Scholar
  44. Morrison, J. L., Duffield, J. A., Muhlhausler, B. S., Gentili, S., & McMillen, I. C. (2010). Fetal growth restriction, catch-up growth and the early origins of insulin resistance and visceral obesity. Pediatric Nephrology, 25(4), 669–677.  https://doi.org/10.1007/s00467-009-1407-3.CrossRefPubMedGoogle Scholar
  45. Nada, S. E., Thompson, R. C., & Padmanabhan, V. (2010). Developmental programming: Differential effects of prenatal testosterone excess on insulin target tissues. Endocrinology, 151(11), 5165–5173.  https://doi.org/10.1210/en.2010-0666.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Nijland, M. J., Ford, S. P., & Nathanielsz, P. W. (2008). Prenatal origins of adult disease. Current Opinion in Obstetrics & Gynecology, 20(2), 132–138.  https://doi.org/10.1097/GCO.0b013e3282f76753.CrossRefGoogle Scholar
  47. Nikoulina, S. E., Ciaraldi, T. P., Mudaliar, S., Mohideen, P., Carter, L., & Henry, R. R. (2000). Potential role of glycogen synthase kinase-3 in skeletal muscle insulin resistance of type 2 diabetes. Diabetes, 49(2), 263–271.CrossRefPubMedGoogle Scholar
  48. Nuutila, P., Knuuti, M. J., Maki, M., Laine, H., Ruotsalainen, U., Teras, M., Haaparanta, M., Solin, O., & Yki-Jarvinen, H. (1995). Gender and insulin sensitivity in the heart and in skeletal muscles. Studies using positron emission tomography. Diabetes, 44(1), 31–36.CrossRefPubMedGoogle Scholar
  49. Ohlsson, C., Hellberg, N., Parini, P., Vidal, O., Bohlooly, Y. M., Rudling, M., Lindberg, M. K., Warner, M., Angelin, B., & Gustafsson, J. A. (2000). Obesity and disturbed lipoprotein profile in estrogen receptor-alpha-deficient male mice. Biochemical and Biophysical Research Communications, 278(3), 640–645.  https://doi.org/10.1006/bbrc.2000.3827.CrossRefPubMedGoogle Scholar
  50. Padmanabhan, V., & Veiga-Lopez, A. (2013). Sheep models of polycystic ovary syndrome phenotype. Molecular and Cellular Endocrinology, 373(1–2), 8–20.  https://doi.org/10.1016/j.mce.2012.10.005.CrossRefPubMedGoogle Scholar
  51. Padmanabhan, V., & Veiga-Lopez, A. (2014). Reproduction symposium: Developmental programming of reproductive and metabolic health. Journal of Animal Science, 92(8), 3199–3210.  https://doi.org/10.2527/jas.2014-7637.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Padmanabhan, V., Veiga-Lopez, A., Abbott, D., Recabarren, S., & Herkimer, C. (2010). Developmental programming: Impact of prenatal testosterone excess and postnatal weight gain on insulin sensitivity index and transfer of traits to offspring of overweight females. Endocrinology, 151(2), 595–605.CrossRefPubMedGoogle Scholar
  53. Padmanabhan, V., Cardoso, R. C., & Puttabyatappa, M. (2016). Developmental programming, a pathway to disease. Endocrinology, 157(4), 1328–1340.  https://doi.org/10.1210/en.2016-1003.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Pradhan, A. D. (2014). Sex differences in the metabolic syndrome: Implications for cardiovascular health in women. Clinical Chemistry, 60(1), 44–52.  https://doi.org/10.1373/clinchem.2013.202549.CrossRefPubMedGoogle Scholar
  55. Puttabyatappa, M., Andriessen, V., Mesquitta, M., Zeng, L., Pennathur, S., & Padmanabhan, V. (2017). Developmental programming: Impact of gestational steroid and metabolic milieus on mediators of insulin sensitivity in prenatal testosterone-treated female sheep. Endocrinology, 158(9), 2783–2798.  https://doi.org/10.1210/en.2017-00460.
  56. Rae, M., Grace, C., Hogg, K., Wilson, L. M., McHaffie, S. L., Ramaswamy, S., MacCallum, J., Connolly, F., McNeilly, A. S., & Duncan, C. (2013). The pancreas is altered by in utero androgen exposure: Implications for clinical conditions such as polycystic ovary syndrome (PCOS). PLoS One, 8(2), e56263.  https://doi.org/10.1371/journal.pone.0056263.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ramaswamy, S., Grace, C., Mattei, A. A., Siemienowicz, K., Brownlee, W., MacCallum, J., McNeilly, A. S., Duncan, W. C., & Rae, M. T. (2016). Developmental programming of polycystic ovary syndrome (PCOS): Prenatal androgens establish pancreatic islet alpha/beta cell ratio and subsequent insulin secretion. Scientific Reports, 6, 27408.  https://doi.org/10.1038/srep27408.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Rani, V., Deep, G., Singh, R. K., Palle, K., & Yadav, U. C. (2016). Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sciences, 148, 183–193.  https://doi.org/10.1016/j.lfs.2016.02.002.CrossRefPubMedGoogle Scholar
  59. Rao, P. M., Kelly, D. M., & Jones, T. H. (2013). Testosterone and insulin resistance in the metabolic syndrome and T2DM in men. Nature Reviews Endocrinology, 9(8), 479–493.  https://doi.org/10.1038/nrendo.2013.122.CrossRefPubMedGoogle Scholar
  60. Rask-Madsen, C., & Kahn, C. R. (2012). Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(9), 2052–2059.  https://doi.org/10.1161/ATVBAHA.111.241919.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Recabarren, S. E., Padmanabhan, V., Codner, E., Lobos, A., Durán, C., Vidal, M., Foster, D. L., & Sir-Petermann, T. (2005). Postnatal developmental consequences of altered insulin sensitivity in female sheep treated prenatally with testosterone. American Journal of Physiology-Endocrinology and Metabolism, 289(5), E801–E806.CrossRefPubMedGoogle Scholar
  62. Rochlani, Y., Pothineni, N. V., & Mehta, J. L. (2015). Metabolic syndrome: Does it differ between women and men? Cardiovascular Drugs and Therapy, 29(4), 329–338.  https://doi.org/10.1007/s10557-015-6593-6.CrossRefPubMedGoogle Scholar
  63. Romeo, G. R., Lee, J., & Shoelson, S. E. (2012). Metabolic syndrome, insulin resistance, and roles of inflammation – mechanisms and therapeutic targets. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(8), 1771–1776.  https://doi.org/10.1161/ATVBAHA.111.241869.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ropero, A. B., Alonso-Magdalena, P., Quesada, I., & Nadal, A. (2008). The role of estrogen receptors in the control of energy and glucose homeostasis. Steroids, 73(9–10), 874–879.  https://doi.org/10.1016/j.steroids.2007.12.018.CrossRefPubMedGoogle Scholar
  65. Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. (2004). Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Human Reproduction, 19(1), 41–47.  https://doi.org/10.1093/humrep/deh098.CrossRefGoogle Scholar
  66. Ruan, H., & Dong, L. Q. (2016). Adiponectin signaling and function in insulin target tissues. Journal of Molecular Cell Biology, 8(2), 101–109.  https://doi.org/10.1093/jmcb/mjw014.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Saltiel, A. R., & Kahn, C. R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 414(6865), 799–806.  https://doi.org/10.1038/414799a.CrossRefPubMedGoogle Scholar
  68. Savkur, R. S., Philips, A. V., & Cooper, T. A. (2001). Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nature Genetics, 29(1), 40–47.  https://doi.org/10.1038/ng704.CrossRefPubMedGoogle Scholar
  69. Sayiner, M., Koenig, A., Henry, L., & Younossi, Z. M. (2016). Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in the United States and the rest of the world. Clinics in Liver Disease, 20(2), 205–214.  https://doi.org/10.1016/j.cld.2015.10.001.CrossRefPubMedGoogle Scholar
  70. Sir-Petermann, T., Hitchsfeld, C., Maliqueo, M., Codner, E., Echiburu, B., Gazitua, R., Recabarren, S., & Cassorla, F. (2005). Birth weight in offspring of mothers with polycystic ovarian syndrome. Human Reproduction, 20(8), 2122–2126.  https://doi.org/10.1093/humrep/dei009.CrossRefPubMedGoogle Scholar
  71. Sir-Petermann, T., Ladron de Guevara, A., Villarroel, A. C., Preisler, J., Echiburu, B., & Recabarren, S. (2012). Polycystic ovary syndrome and pregnancy. Revista Médica de Chile, 140(7), 919–925.  https://doi.org/10.4067/S0034-98872012000700015.CrossRefPubMedGoogle Scholar
  72. Soumaya, K. (2012). Molecular mechanisms of insulin resistance in diabetes. Advances in Experimental Medicine and Biology, 771, 240–251.PubMedGoogle Scholar
  73. Steckler, T., Wang, J., Bartol, F. F., Roy, S. K., & Padmanabhan, V. (2005). Fetal programming: Prenatal testosterone treatment causes intrauterine growth retardation, reduces ovarian reserve and increases ovarian follicular recruitment. Endocrinology, 146(7), 3185–3193.CrossRefPubMedGoogle Scholar
  74. Tang, W. Y., & Ho, S. M. (2007). Epigenetic reprogramming and imprinting in origins of disease. Reviews in Endocrine & Metabolic Disorders, 8(2), 173–182.  https://doi.org/10.1007/s11154-007-9042-4.CrossRefGoogle Scholar
  75. Veiga-Lopez, A., Steckler, T. L., Abbott, D. H., Welch, K. B., MohanKumar, P. S., Phillips, D. J., Refsal, K., & Padmanabhan, V. (2011). Developmental programming: Impact of excess prenatal testosterone on intrauterine fetal endocrine milieu and growth in sheep. Biology of Reproduction, 84(1), 87–96.  https://doi.org/10.1095/biolreprod.110.086686.CrossRefPubMedGoogle Scholar
  76. Veiga-Lopez, A., Moeller, J., Patel, D., Ye, W., Pease, A., Kinns, J., & Padmanabhan, V. (2013). Developmental programming: Impact of prenatal testosterone excess on insulin sensitivity, adiposity, and free fatty acid profile in postpubertal female sheep. Endocrinology, 154(5), 1731–1742.  https://doi.org/10.1210/en.2012-2145.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Verdile, G., Keane, K. N., Cruzat, V. F., Medic, S., Sabale, M., Rowles, J., Wijesekara, N., Martins, R. N., Fraser, P. E., & Newsholme, P. (2015). Inflammation and oxidative stress: The molecular connectivity between insulin resistance, obesity, and Alzheimer’s disease. Mediators of Inflammation, 2015, 105828.  https://doi.org/10.1155/2015/105828.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Villa, J., & Pratley, R. E. (2011). Adipose tissue dysfunction in polycystic ovary syndrome. Current Diabetes Reports, 11(3), 179–184.  https://doi.org/10.1007/s11892-011-0189-8.CrossRefPubMedGoogle Scholar
  79. Vom Saal, F. S. (2016). Triennial reproduction symposium: Environmental programming of reproduction during fetal life: Effects of intrauterine position and the endocrine disrupting chemical bisphenol A. Journal of Animal Science, 94(7), 2722–2736.  https://doi.org/10.2527/jas.2015-0211.CrossRefPubMedGoogle Scholar
  80. Vyas, A. K., Hoang, V., Padmanabhan, V., Gilbreath, E., & Mietelka, K. A. (2016). Prenatal programming: Adverse cardiac programming by gestational testosterone excess. Scientific Reports, 6, 28335.  https://doi.org/10.1038/srep28335.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wallace, I. R., McKinley, M. C., Bell, P. M., & Hunter, S. J. (2013). Sex hormone binding globulin and insulin resistance. Clinical Endocrinology, 78(3), 321–329.  https://doi.org/10.1111/cen.12086.CrossRefPubMedGoogle Scholar
  82. Zawadzki, J., & Dunaif, A. (1992). Current issues in endocrinology and metabolism: Polycystic ovary syndrome. Cambridge, MA: Blackwell Scientific Publications.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PediatricsUniversity of MichiganAnn ArborUSA

Personalised recommendations