Advertisement

Sex Differences in Body Composition

  • Miriam A. Bredella
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1043)

Abstract

Body composition differs between men and women. Men have more lean mass, and women have more fat mass than men. Men are more likely to accumulate adipose tissue around the trunk and abdomen, whereas women usually accumulate adipose tissue around the hips and thighs. Less is known about sex differences in ectopic fat depots. Advances in imaging allow the noninvasive assessment of abdominal and femorogluteal fat compartments, intramyocellular lipids, intrahepatic lipids, pericardial adipose tissue, and neck adipose tissue including brown adipose tissue and tongue adipose tissue. In this review, sex differences of regional adipose tissue, muscle mass, ectopic lipids, and brown adipose tissue and their effects on cardiometabolic risk will be discussed. In addition, novel imaging techniques to quantify these body composition compartments noninvasively will be described.

Keywords

Sex differences Body composition Visceral adipose tissue Subcutaneous adipose tissue Muscle mass Intramyocellular lipids Intrahepatic lipids Pericardial adipose tissue Neck adipose tissue Brown adipose tissue Tongue adipose tissue 

Notes

Disclosure

The author has nothing to disclose.

References

  1. Abate, N., Burns, D., Peshock, R. M., Garg, A., & Grundy, S. M. (1994). Estimation of adipose tissue mass by magnetic resonance imaging: Validation against dissection in human cadavers. Journal of Lipid Research, 35, 1490–1496.PubMedGoogle Scholar
  2. Arnold, A. M., Psaty, B. M., Kuller, L. H., Burke, G. L., Manolio, T. A., Fried, L. P., Robbins, J. A., & Kronmal, R. A. (2005). Incidence of cardiovascular disease in older Americans: The cardiovascular health study. Journal of the American Geriatrics Society, 53, 211–218.CrossRefPubMedGoogle Scholar
  3. Au-Yong, I. T., Thorn, N., Ganatra, R., Perkins, A. C., & Symonds, M. E. (2009). Brown adipose tissue and seasonal variation in humans. Diabetes, 58, 2583–2587.CrossRefPubMedCentralPubMedGoogle Scholar
  4. Baker, A. R., Silva, N. F., Quinn, D. W., Harte, A. L., Pagano, D., Bonser, R. S., Kumar, S., & McTernan, P. G. (2006). Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovascular Diabetology, 5, 1.CrossRefPubMedCentralPubMedGoogle Scholar
  5. Batsis, J. A., Mackenzie, T. A., Barre, L. K., Lopez-Jimenez, F., & Bartels, S. J. (2014). Sarcopenia, sarcopenic obesity and mortality in older adults: Results from the National Health and Nutrition Examination Survey III. European Journal of Clinical Nutrition, 68, 1001–1007.CrossRefPubMedGoogle Scholar
  6. Beneke, R., Neuerburg, J., & Bohndorf, K. (1991). Muscle cross-section measurement by magnetic resonance imaging. European Journal of Applied Physiology and Occupational Physiology, 63, 424–429.CrossRefPubMedGoogle Scholar
  7. Bjorntorp, P. (1985). Regional patterns of fat distribution. Annals of Internal Medicine, 103, 994–995.CrossRefPubMedGoogle Scholar
  8. Bjorntorp, P. (1992). Metabolic abnormalities in visceral obesity. Annals of Medicine, 24, 3–5.CrossRefPubMedGoogle Scholar
  9. Bjorntorp, P., & Rosmond, R. (1999). Visceral obesity and diabetes. Drugs, 58(Suppl 1), 13–18; discussion 75–82.CrossRefPubMedGoogle Scholar
  10. Blake, G. M., & Fogelman, I. (2007). Role of dual-energy X-ray absorptiometry in the diagnosis and treatment of osteoporosis. Journal of Clinical Densitometry, 10, 102–110.CrossRefPubMedGoogle Scholar
  11. Boesch, C. (2007). Musculoskeletal spectroscopy. Journal of Magnetic Resonance Imaging, 25, 321–338.CrossRefPubMedGoogle Scholar
  12. Boesch, C., & Kreis, R. (2000). Observation of intramyocellular lipids by 1H-magnetic resonance spectroscopy. Annals of the New York Academy of Sciences, 904, 25–31.CrossRefPubMedGoogle Scholar
  13. Boesch, C., Slotboom, J., Hoppeler, H., & Kreis, R. (1997). In vivo determination of intra-myocellular lipids in human muscle by means of localized 1H-MR-spectroscopy. Magnetic Resonance in Medicine, 37, 484–493.CrossRefPubMedGoogle Scholar
  14. Borkan, G. A., Hults, D. E., Gerzof, S. G., Robbins, A. H., & Silbert, C. K. (1983). Age changes in body composition revealed by computed tomography. Journal of Gerontology, 38, 673–677.CrossRefPubMedGoogle Scholar
  15. Bredella, M. A., Utz, A. L., Torriani, M., Thomas, B., Schoenfeld, D. A., & Miller, K. K. (2009). Anthropometry, CT, and DXA as predictors of GH deficiency in premenopausal women: ROC curve analysis. Journal of Applied Physiology, 106, 418–422.CrossRefPubMedGoogle Scholar
  16. Bredella, M. A., Ghomi, R. H., Thomas, B. J., Torriani, M., Brick, D. J., Gerweck, A. V., Misra, M., Klibanski, A., & Miller, K. K. (2010a). Comparison of DXA and CT in the assessment of body composition in premenopausal women with obesity and anorexia nervosa. Obesity (Silver Spring), 18, 2227–2233.CrossRefGoogle Scholar
  17. Bredella, M. A., Hosseini Ghomi, R., Thomas, B. J., Miller, K. K., & Torriani, M. (2010b). Comparison of 3.0 T proton magnetic resonance spectroscopy short and long echo-time measures of intramyocellular lipids in obese and normal-weight women. Journal of Magnetic Resonance Imaging, 32, 388–393.CrossRefPubMedCentralPubMedGoogle Scholar
  18. Bredella, M. A., Hosseini Ghomi, R., Thomas, B. J., Ouellette, H. A., Sahani, D. V., Miller, K. K., & Torriani, M. (2010c). Breath-hold 1H-magnetic resonance spectroscopy for intrahepatic lipid quantification at 3 tesla. Journal of Computer Assisted Tomography, 34, 372–376.CrossRefPubMedCentralPubMedGoogle Scholar
  19. Bredella, M. A., Gill, C. M., Keating, L. K., Torriani, M., Anderson, E. J., Punyanitya, M., Wilson, K. E., Kelly, T. L., & Miller, K. K. (2013). Assessment of abdominal fat compartments using DXA in premenopausal women from anorexia nervosa to morbid obesity. Obesity (Silver Spring), 21, 2458–2464.CrossRefGoogle Scholar
  20. Brinkley, T. E., Hsu, F. C., Carr, J. J., Hundley, W. G., Bluemke, D. A., Polak, J. F., & Ding, J. (2011). Pericardial fat is associated with carotid stiffness in the multi-ethnic study of atherosclerosis. Nutrition, Metabolism, and Cardiovascular Diseases, 21, 332–338.CrossRefPubMedGoogle Scholar
  21. Cannon, B., & Nedergaard, J. (2004). Brown adipose tissue: Function and physiological significance. Physiological Reviews, 84, 277–359.CrossRefPubMedGoogle Scholar
  22. Charlton, M. (2008). Cirrhosis and liver failure in nonalcoholic fatty liver disease: Molehill or mountain? Hepatology, 47, 1431–1433.CrossRefPubMedCentralPubMedGoogle Scholar
  23. Chen, K. Y., Cypess, A. M., Laughlin, M. R., Haft, C. R., Hu, H. H., Bredella, M. A., Enerback, S., Kinahan, P. E., Lichtenbelt, W., Lin, F. I., Sunderland, J. J., Virtanen, K. A., & Wahl, R. L. (2016). Brown Adipose Reporting Criteria in Imaging STudies (BARCIST 1.0): Recommendations for standardized FDG-PET/CT experiments in humans. Cell Metabolism, 24, 210–222.CrossRefPubMedCentralPubMedGoogle Scholar
  24. Cheng, K. H., Chu, C. S., Lee, K. T., Lin, T. H., Hsieh, C. C., Chiu, C. C., Voon, W. C., Sheu, S. H., & Lai, W. T. (2008). Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease. International Journal of Obesity, 32, 268–274.CrossRefPubMedGoogle Scholar
  25. Cypess, A. M., Lehman, S., Williams, G., Tal, I., Rodman, D., Goldfine, A. B., Kuo, F. C., Palmer, E. L., Tseng, Y. H., Doria, A., Kolodny, G. M., & Kahn, C. R. (2009). Identification and importance of brown adipose tissue in adult humans. The New England Journal of Medicine, 360, 1509–1517.CrossRefPubMedCentralPubMedGoogle Scholar
  26. DeFronzo, R. A., & Tripathy, D. (2009). Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care, 32(Suppl 2), S157–S163.CrossRefPubMedCentralPubMedGoogle Scholar
  27. Dichtel, L. E., Eajazi, A., Miller, K. K., Torriani, M., & Bredella, M. A. (2016). Short- and long-term reproducibility of intrahepatic lipid quantification by 1H-MR spectroscopy and CT in obesity. Journal of Computer Assisted Tomography, 40, 678–682.CrossRefPubMedCentralPubMedGoogle Scholar
  28. Ding, J., Kritchevsky, S. B., Hsu, F. C., Harris, T. B., Burke, G. L., Detrano, R. C., Szklo, M., Criqui, M. H., Allison, M., Ouyang, P., Brown, E. R., & Carr, J. J. (2008). Association between non-subcutaneous adiposity and calcified coronary plaque: A substudy of the Multi-Ethnic Study of Atherosclerosis. The American Journal of Clinical Nutrition, 88, 645–650.CrossRefPubMedCentralPubMedGoogle Scholar
  29. Engstrom, C. M., Loeb, G. E., Reid, J. G., Forrest, W. J., & Avruch, L. (1991). Morphometry of the human thigh muscles. A comparison between anatomical sections and computer tomographic and magnetic resonance images. Journal of Anatomy, 176, 139–156.PubMedCentralPubMedGoogle Scholar
  30. Fantuzzi, G., & Mazzone, T. (2007). Adipose tissue and atherosclerosis: Exploring the connection. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 996–1003.CrossRefPubMedGoogle Scholar
  31. Fox, C. S., Massaro, J. M., Hoffmann, U., Pou, K. M., Maurovich-Horvat, P., Liu, C. Y., Vasan, R. S., Murabito, J. M., Meigs, J. B., Cupples, L. A., D’Agostino, R. B., Sr., & O’Donnell, C. J. (2007). Abdominal visceral and subcutaneous adipose tissue compartments: Association with metabolic risk factors in the Framingham Heart Study. Circulation, 116, 39–48.CrossRefPubMedGoogle Scholar
  32. Friedman, D. J., Wang, N., Meigs, J. B., Hoffmann, U., Massaro, J. M., Fox, C. S., & Magnani, J. W. (2014). Pericardial fat is associated with atrial conduction: The Framingham Heart Study. Journal of the American Heart Association, 3, e000477.CrossRefPubMedCentralPubMedGoogle Scholar
  33. Fuller, N. J., Hardingham, C. R., Graves, M., Screaton, N., Dixon, A. K., Ward, L. C., & Elia, M. (1999). Assessment of limb muscle and adipose tissue by dual-energy X-ray absorptiometry using magnetic resonance imaging for comparison. International Journal of Obesity and Related Metabolic Disorders, 23, 1295–1302.CrossRefPubMedGoogle Scholar
  34. Gallagher, D., Visser, M., De Meersman, R. E., Sepulveda, D., Baumgartner, R. N., Pierson, R. N., Harris, T., & Heymsfield, S. B. (1985). 1997 Appendicular skeletal muscle mass: Effects of age, gender, and ethnicity. Journal of Applied Physiology, 83, 229–239.CrossRefGoogle Scholar
  35. Glickman, S. G., Marn, C. S., Supiano, M. A., & Dengel, D. R. (1985). 2004 Validity and reliability of dual-energy X-ray absorptiometry for the assessment of abdominal adiposity. Journal of Applied Physiology, 97, 509–514.CrossRefGoogle Scholar
  36. Godoy, I. R., Martinez-Salazar, E. L., Eajazi, A., Genta, P. R., Bredella, M. A., & Torriani, M. (2016). Fat accumulation in the tongue is associated with male gender, abnormal upper airway patency and whole-body adiposity. Metabolism, 65, 1657–1663.CrossRefPubMedCentralPubMedGoogle Scholar
  37. Goodpaster, B. H., Thaete, F. L., Simoneau, J. A., & Kelley, D. E. (1997). Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes, 46, 1579–1585.CrossRefPubMedGoogle Scholar
  38. Goodpaster, B. H., Theriault, R., Watkins, S. C., & Kelley, D. E. (2000). Intramuscular lipid content is increased in obesity and decreased by weight loss. Metabolism, 49, 467–472.CrossRefPubMedGoogle Scholar
  39. Janssen, I., Heymsfield, S. B., Wang, Z. M., & Ross, R. (1985). 2000 Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. Journal of Applied Physiology, 89, 81–88.CrossRefGoogle Scholar
  40. Kanehisa, H., Ikegawa, S., Tsunoda, N., & Fukunaga, T. (1994). Cross-sectional areas of fat and muscle in limbs during growth and middle age. International Journal of Sports Medicine, 15, 420–425.CrossRefPubMedGoogle Scholar
  41. Kim, A. M., Keenan, B. T., Jackson, N., Chan, E. L., Staley, B., Poptani, H., Torigian, D. A., Pack, A. I., & Schwab, R. J. (2014). Tongue fat and its relationship to obstructive sleep apnea. Sleep, 37, 1639–1648.CrossRefPubMedCentralPubMedGoogle Scholar
  42. Kvist, H., Chowdhury, B., Grangard, U., Tylen, U., & Sjostrom, L. (1988). Total and visceral adipose-tissue volumes derived from measurements with computed tomography in adult men and women: Predictive equations. The American Journal of Clinical Nutrition, 48, 1351–1361.CrossRefPubMedGoogle Scholar
  43. Larsen, B. A., Wassel, C. L., Kritchevsky, S. B., Strotmeyer, E. S., Criqui, M. H., Kanaya, A. M., Fried, L. F., Schwartz, A. V., Harris, T. B., & Ix, J. H. (2016). Association of muscle mass, area, and strength with incident diabetes in older adults: The health ABC study. The Journal of Clinical Endocrinology and Metabolism, 101, 1847–1855.CrossRefPubMedCentralPubMedGoogle Scholar
  44. Lee, J. J., Yin, X., Hoffmann, U., Fox, C. S., & Benjamin, E. J. (2016). Relation of pericardial fat, intrathoracic fat, and abdominal visceral fat with incident atrial fibrillation (from the Framingham Heart Study). The American Journal of Cardiology, 118, 1486–1492.CrossRefPubMedCentralPubMedGoogle Scholar
  45. Leenders, M., Verdijk, L. B., van der Hoeven, L., Adam, J. J., van Kranenburg, J., Nilwik, R., & van Loon, L. J. (2013). Patients with type 2 diabetes show a greater decline in muscle mass, muscle strength, and functional capacity with aging. Journal of the American Medical Directors Association, 14, 585–592.CrossRefPubMedGoogle Scholar
  46. Lemieux, S., Prud’homme, D., Bouchard, C., Tremblay, A., & Despres, J. P. (1993). Sex differences in the relation of visceral adipose tissue accumulation to total body fatness. The American Journal of Clinical Nutrition, 58, 463–467.CrossRefPubMedGoogle Scholar
  47. Lemieux, S., Despres, J. P., Moorjani, S., Nadeau, A., Theriault, G., Prud’homme, D., Tremblay, A., Bouchard, C., & Lupien, P. J. (1994). Are gender differences in cardiovascular disease risk factors explained by the level of visceral adipose tissue? Diabetologia, 37, 757–764.CrossRefPubMedGoogle Scholar
  48. Levine, J. A., Abboud, L., Barry, M., Reed, J. E., Sheedy, P. F., & Jensen, M. D. (1985). 2000 Measuring leg muscle and fat mass in humans: Comparison of CT and dual-energy X-ray absorptiometry. Journal of Applied Physiology, 88, 452–456.CrossRefGoogle Scholar
  49. Lonardo, A., & Trande, P. (2000). Are there any sex differences in fatty liver? A study of glucose metabolism and body fat distribution. Journal of Gastroenterology and Hepatology, 15, 775–782.CrossRefPubMedGoogle Scholar
  50. Lopez, M., & Tena-Sempere, M. (2016). Estradiol and brown fat. Best Practice & Research. Clinical Endocrinology & Metabolism, 30, 527–536.CrossRefGoogle Scholar
  51. Lowell, B. B., & Spiegelman, B. M. (2000). Towards a molecular understanding of adaptive thermogenesis. Nature, 404, 652–660.CrossRefPubMedGoogle Scholar
  52. Machann, J., Haring, H., Schick, F., & Stumvoll, M. (2004). Intramyocellular lipids and insulin resistance. Diabetes, Obesity & Metabolism, 6, 239–248.CrossRefGoogle Scholar
  53. Machann, J., Thamer, C., Schnoedt, B., Haap, M., Haring, H. U., Claussen, C. D., Stumvoll, M., Fritsche, A., & Schick, F. (2005a). Standardized assessment of whole body adipose tissue topography by MRI. Journal of Magnetic Resonance Imaging, 21, 455–462.CrossRefPubMedGoogle Scholar
  54. Machann, J., Thamer, C., Schnoedt, B., Stefan, N., Stumvoll, M., Haring, H. U., Claussen, C. D., Schick, F., & Fritsche, A. (2005b). Age and gender related effects on adipose tissue compartments of subjects with increased risk for type 2 diabetes: A whole body MRI/MRS study. Magma, 18, 128–137.CrossRefPubMedGoogle Scholar
  55. Machann, J., Stefan, N., & Schick, F. (2008). (1)H MR spectroscopy of skeletal muscle, liver and bone marrow. European Journal of Radiology, 67, 275–284.CrossRefPubMedGoogle Scholar
  56. Micklesfield, L. K., Goedecke, J. H., Punyanitya, M., Wilson, K. E., & Kelly, T. L. (2012). Dual-energy X-ray performs as well as clinical computed tomography for the measurement of visceral fat. Obesity (Silver Spring), 20, 1109–1114.CrossRefGoogle Scholar
  57. Mitsiopoulos, N., Baumgartner, R. N., Heymsfield, S. B., Lyons, W., Gallagher, D., & Ross, R. (1985). 1998 Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. Journal of Applied Physiology, 85, 115–122.CrossRefGoogle Scholar
  58. Nichols, J. H., Samy, B., Nasir, K., Fox, C. S., Schulze, P. C., Bamberg, F., & Hoffmann, U. (2008). Volumetric measurement of pericardial adipose tissue from contrast-enhanced coronary computed tomography angiography: A reproducibility study. Journal of Cardiovascular Computed Tomography, 2, 288–295.CrossRefPubMedCentralPubMedGoogle Scholar
  59. North, K. E., Graff, M., Franceschini, N., Reiner, A. P., Feitosa, M. F., Carr, J. J., Gordon-Larsen, P., Wojczynski, M. K., & Borecki, I. B. (2012). Sex and race differences in the prevalence of fatty liver disease as measured by computed tomography liver attenuation in European American and African American participants of the NHLBI family heart study. European Journal of Gastroenterology & Hepatology, 24, 9–16.CrossRefGoogle Scholar
  60. Ochi, M., Kohara, K., Tabara, Y., Kido, T., Uetani, E., Ochi, N., Igase, M., & Miki, T. (2010). Arterial stiffness is associated with low thigh muscle mass in middle-aged to elderly men. Atherosclerosis, 212, 327–332.CrossRefPubMedGoogle Scholar
  61. Oh, C., Jho, S., No, J. K., & Kim, H. S. (2015). Body composition changes were related to nutrient intakes in elderly men but elderly women had a higher prevalence of sarcopenic obesity in a population of Korean adults. Nutrition Research, 35, 1–6.CrossRefPubMedGoogle Scholar
  62. Ohlson, L. O., Larsson, B., Svardsudd, K., Welin, L., Eriksson, H., Wilhelmsen, L., Bjorntorp, P., & Tibblin, G. (1985). The influence of body fat distribution on the incidence of diabetes mellitus. 13.5 years of follow-up of the participants in the study of men born in 1913. Diabetes, 34, 1055–1058.CrossRefPubMedGoogle Scholar
  63. Ouellet, V., Routhier-Labadie, A., Bellemare, W., Lakhal-Chaieb, L., Turcotte, E., Carpentier, A. C., & Richard, D. (2011). Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. The Journal of Clinical Endocrinology and Metabolism, 96, 192–199.CrossRefPubMedGoogle Scholar
  64. Park, S. W., Goodpaster, B. H., Lee, J. S., Kuller, L. H., Boudreau, R., de Rekeneire, N., Harris, T. B., Kritchevsky, S., Tylavsky, F. A., Nevitt, M., Cho, Y. W., & Newman, A. B. (2009). Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care, 32, 1993–1997.CrossRefPubMedCentralPubMedGoogle Scholar
  65. Pedersen, S. B., Bruun, J. M., Kristensen, K., & Richelsen, B. (2001). Regulation of UCP1, UCP2, and UCP3 mRNA expression in brown adipose tissue, white adipose tissue, and skeletal muscle in rats by estrogen. Biochemical and Biophysical Research Communications, 288, 191–197.CrossRefPubMedGoogle Scholar
  66. Power, M. L., & Schulkin, J. (2008). Sex differences in fat storage, fat metabolism, and the health risks from obesity: Possible evolutionary origins. The British Journal of Nutrition, 99, 931–940.CrossRefPubMedGoogle Scholar
  67. Preis, S. R., Massaro, J. M., Hoffmann, U., D'Agostino, R. B., Sr., Levy, D., Robins, S. J., Meigs, J. B., Vasan, R. S., O'Donnell, C. J., & Fox, C. S. (2010). Neck circumference as a novel measure of cardiometabolic risk: The Framingham Heart study. The Journal of Clinical Endocrinology and Metabolism, 95, 3701–3710.CrossRefPubMedCentralPubMedGoogle Scholar
  68. Rodriguez-Cuenca, S., Monjo, M., Frontera, M., Gianotti, M., Proenza, A. M., & Roca, P. (2007). Sex steroid receptor expression profile in brown adipose tissue. Effects of hormonal status. Cellular Physiology and Biochemistry, 20, 877–886.CrossRefPubMedGoogle Scholar
  69. Rosito, G. A., Massaro, J. M., Hoffmann, U., Ruberg, F. L., Mahabadi, A. A., Vasan, R. S., O'Donnell, C. J., & Fox, C. S. (2008). Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: The Framingham Heart Study. Circulation, 117, 605–613.CrossRefPubMedGoogle Scholar
  70. Rossner, S., Bo, W. J., Hiltbrandt, E., Hinson, W., Karstaedt, N., Santago, P., Sobol, W. T., & Crouse, J. R. (1990). Adipose tissue determinations in cadavers – a comparison between cross-sectional planimetry and computed tomography. International Journal of Obesity, 14, 893–902.PubMedGoogle Scholar
  71. Saito, M., Okamatsu-Ogura, Y., Matsushita, M., Watanabe, K., Yoneshiro, T., Nio-Kobayashi, J., Iwanaga, T., Miyagawa, M., Kameya, T., Nakada, K., Kawai, Y., & Tsujisaki, M. (2009). High incidence of metabolically active brown adipose tissue in healthy adult humans: Effects of cold exposure and adiposity. Diabetes, 58, 1526–1531.CrossRefPubMedCentralPubMedGoogle Scholar
  72. Sampath, S. C., Sampath, S. C., Bredella, M. A., Cypess, A. M., & Torriani, M. (2016). Imaging of brown adipose tissue: State of the art. Radiology, 280, 4–19.CrossRefPubMedCentralPubMedGoogle Scholar
  73. Schlett, C. L., Ferencik, M., Kriegel, M. F., Bamberg, F., Ghoshhajra, B. B., Joshi, S. B., Nagurney, J. T., Fox, C. S., Truong, Q. A., & Hoffmann, U. (2012). Association of pericardial fat and coronary high-risk lesions as determined by cardiac CT. Atherosclerosis, 222, 129–134.CrossRefPubMedCentralPubMedGoogle Scholar
  74. Schwab, R. J., Gupta, K. B., Gefter, W. B., Metzger, L. J., Hoffman, E. A., & Pack, A. I. (1995). Upper airway and soft tissue anatomy in normal subjects and patients with sleep-disordered breathing. Significance of the lateral pharyngeal walls. American Journal of Respiratory and Critical Care Medicine, 152, 1673–1689.CrossRefPubMedGoogle Scholar
  75. Shulman, G. I. (2000). Cellular mechanisms of insulin resistance. The Journal of Clinical Investigation, 106, 171–176.CrossRefPubMedCentralPubMedGoogle Scholar
  76. Shulman, G. I. (2014). Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. The New England Journal of Medicine, 371, 1131–1141.CrossRefPubMedGoogle Scholar
  77. Snijder, M. B., Visser, M., Dekker, J. M., Goodpaster, B. H., Harris, T. B., Kritchevsky, S. B., De Rekeneire, N., Kanaya, A. M., Newman, A. B., Tylavsky, F. A., & Seidell, J. C. (2005). Low subcutaneous thigh fat is a risk factor for unfavourable glucose and lipid levels, independently of high abdominal fat. The Health ABC Study. Diabetologia, 48, 301–308.CrossRefPubMedGoogle Scholar
  78. Soliman, E. Z., Ding, J., Hsu, F. C., Carr, J. J., Polak, J. F., & Goff, D. C., Jr. (2010). Association between carotid intima-media thickness and pericardial fat in the Multi-Ethnic Study of Atherosclerosis (MESA). Journal of Stroke and Cerebrovascular Diseases, 19, 58–65.CrossRefPubMedCentralPubMedGoogle Scholar
  79. Tanner, J. M., Hughes, P. C., & Whitehouse, R. H. (1981). Radiographically determined widths of bone muscle and fat in the upper arm and calf from age 3–18 years. Annals of Human Biology, 8, 495–517.CrossRefPubMedGoogle Scholar
  80. Tchernof, A., & Despres, J. P. (2013). Pathophysiology of human visceral obesity: An update. Physiological Reviews, 93, 359–404.CrossRefPubMedGoogle Scholar
  81. Thomas, M. A., Chung, H. K., & Middlekauff, H. (2005). Localized two-dimensional 1H magnetic resonance exchange spectroscopy: A preliminary evaluation in human muscle. Magnetic Resonance in Medicine, 53, 495–502.CrossRefPubMedGoogle Scholar
  82. Thuzar, M., & Ho, K. K. (2016). Mechanisms in endocrinology: Brown adipose tissue in humans: Regulation and metabolic significance. European Journal of Endocrinology, 175, R11–R25.CrossRefPubMedGoogle Scholar
  83. Torriani, M., Thomas, B. J., Halpern, E. F., Jensen, M. E., Rosenthal, D. I., & Palmer, W. E. (2005). Intramyocellular lipid quantification: Repeatability with 1H MR spectroscopy. Radiology, 236, 609–614.CrossRefPubMedGoogle Scholar
  84. Torriani, M., Thomas, B. J., Bredella, M. A., & Ouellette, H. (2007). Intramyocellular lipid quantification: Comparison between 3.0- and 1.5-T (1)H-MRS. Magnetic Resonance Imaging, 25, 1105–1111.CrossRefPubMedCentralPubMedGoogle Scholar
  85. Torriani, M., Gill, C. M., Daley, S., Oliveira, A. L., Azevedo, D. C., & Bredella, M. A. (2014). Compartmental neck fat accumulation and its relation to cardiovascular risk and metabolic syndrome. The American Journal of Clinical Nutrition, 100, 1244–1251.CrossRefPubMedGoogle Scholar
  86. Velan, S. S., Durst, C., Lemieux, S. K., Raylman, R. R., Sridhar, R., Spencer, R. G., Hobbs, G. R., & Thomas, M. A. (2007a). Investigation of muscle lipid metabolism by localized one- and two-dimensional MRS techniques using a clinical 3T MRI/MRS scanner. Journal of Magnetic Resonance Imaging, 25, 192–199.CrossRefPubMedGoogle Scholar
  87. Velan, S. S., Ramamurthy, S., Ainala, S., Durst, C., Lemieux, S. K., Raylman, R. R., Spencer, R. G., & Thomas, M. A. (2007b). Implementation and validation of localized constant-time correlated spectroscopy (LCT-COSY) on a clinical 3T MRI scanner for investigation of muscle metabolism. Journal of Magnetic Resonance Imaging, 26, 410–417.CrossRefPubMedGoogle Scholar
  88. Velan, S. S., Said, N., Narasimhan, K., Papan, C., Bahu, A., Vargo, J. A., Raylman, R. R., Thomas, M. A., Rajendran, V. M., Spencer, R. G., & Alway, S. E. (2008). Gender differences in musculoskeletal lipid metabolism as assessed by localized two-dimensional correlation spectroscopy. Magnetic Resonance Insights, 2008, 1–6.PubMedCentralPubMedGoogle Scholar
  89. Vessby, B., Gustafsson, I. B., Tengblad, S., Boberg, M., & Andersson, A. (2002). Desaturation and elongation of Fatty acids and insulin action. Annals of the New York Academy of Sciences, 967, 183–195.CrossRefPubMedGoogle Scholar
  90. Warensjo, E., Riserus, U., & Vessby, B. (2005). Fatty acid composition of serum lipids predicts the development of the metabolic syndrome in men. Diabetologia, 48, 1999–2005.CrossRefPubMedGoogle Scholar
  91. Westerbacka, J., Corner, A., Tiikkainen, M., Tamminen, M., Vehkavaara, S., Hakkinen, A. M., Fredriksson, J., & Yki-Jarvinen, H. (2004). Women and men have similar amounts of liver and intra-abdominal fat, despite more subcutaneous fat in women: Implications for sex differences in markers of cardiovascular risk. Diabetologia, 47, 1360–1369.CrossRefPubMedGoogle Scholar
  92. Wheeler, G. L., Shi, R., Beck, S. R., Langefeld, C. D., Lenchik, L., Wagenknecht, L. E., Freedman, B. I., Rich, S. S., Bowden, D. W., Chen, M. Y., & Carr, J. J. (2005). Pericardial and visceral adipose tissues measured volumetrically with computed tomography are highly associated in type 2 diabetic families. Investigative Radiology, 40, 97–101.CrossRefPubMedGoogle Scholar
  93. Williams, C. D., Stengel, J., Asike, M. I., Torres, D. M., Shaw, J., Contreras, M., Landt, C. L., & Harrison, S. A. (2011). Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: A prospective study. Gastroenterology, 140, 124–131.CrossRefPubMedGoogle Scholar
  94. Wree, A., Broderick, L., Canbay, A., Hoffman, H. M., & Feldstein, A. E. (2013). From NAFLD to NASH to cirrhosis-new insights into disease mechanisms. Nature Reviews. Gastroenterology & Hepatology, 10, 627–636.CrossRefGoogle Scholar
  95. Yoneshiro, T., Aita, S., Matsushita, M., Okamatsu-Ogura, Y., Kameya, T., Kawai, Y., Miyagawa, M., Tsujisaki, M., & Saito, M. (2011). Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans. Obesity (Silver Spring), 19, 1755–1760.CrossRefGoogle Scholar
  96. Yudkin, J. S., Eringa, E., & Stehouwer, C. D. (2005). “Vasocrine” signalling from perivascular fat: A mechanism linking insulin resistance to vascular disease. Lancet, 365, 1817–1820.CrossRefPubMedGoogle Scholar
  97. Zhang, Z., Cypess, A. M., Miao, Q., Ye, H., Liew, C. W., Zhang, Q., Xue, R., Zhang, S., Zuo, C., Xu, Z., Tang, Q., Hu, R., Guan, Y., & Li, Y. (2014). The prevalence and predictors of active brown adipose tissue in Chinese adults. European Journal of Endocrinology, 170, 359–366.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Radiology, Division of Musculoskeletal Radiology and InterventionsMassachusetts General HospitalBostonUSA
  2. 2.Harvard Medical SchoolBostonUSA

Personalised recommendations