Smartphone Data Analysis for Human Activity Recognition

  • Federico Concone
  • Salvatore Gaglio
  • Giuseppe Lo Re
  • Marco MoranaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10640)


In recent years, the percentage of the population owning a smartphone has increased significantly. These devices provide the user with more and more functions, so that anyone is encouraged to carry one during the day, implicitly producing that can be analysed to infer knowledge of the user’s context. In this work we present a novel framework for Human Activity Recognition (HAR) using smartphone data captured by means of embedded triaxial accelerometer and gyroscope sensors. Some statistics over the captured sensor data are computed to model each activity, then real-time classification is performed by means of an efficient supervised learning technique. The system we propose also adopts a participatory sensing paradigm where user’s feedbacks on recognised activities are exploited to update the inner models of the system. Experimental results show the effectiveness of our solution as compared to other state-of-the-art techniques.


  1. 1.
  2. 2.
    Agate, V., de Paola, A., Lo Re, G., Morana, M.: A simulation framework for evaluating distributed reputation management systems. In: Omatu, S., et al. (eds.) Distributed Computing and Artificial Intelligence. Advances in Intelligent Systems and Computing, vol. 474, pp. 247–254. Springer, Heidelberg (2016).
  3. 3.
    Aggarwal, J.K., Xia, L.: Human activity recognition from 3D data: a review. Pattern Recogn. Lett. 48, 70–80 (2014)CrossRefGoogle Scholar
  4. 4.
    Banos, O., Damas, M., Pomares, H., Prieto, A., Rojas, I.: Daily living activity recognition based on statistical feature quality group selection. Expert Syst. Appl. 39(9), 8013–8021 (2012)CrossRefGoogle Scholar
  5. 5.
    Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) Pervasive 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004). CrossRefGoogle Scholar
  6. 6.
    Baretta, D., Sartori, F., Greco, A., Melen, R., Stella, F., Bollini, L., D’addario, M., Steca, P.: Wearable devices and AI techniques integration to promote physical activity. In: Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct, pp. 1105–1108. ACM (2016)Google Scholar
  7. 7.
    Burke, J., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Srivastava, M.B.: Participatory sensing. In: Workshop on World-Sensor-Web (WSW 2006): Mobile Device Centric Sensor Networks and Applications, pp. 117–134 (2006)Google Scholar
  8. 8.
    Cardone, G., Cirri, A., Corradi, A., Foschini, L., Maio, D.: MSF: an efficient mobile phone sensing framework. Int. J. Distrib. Sens. Netw. 9(3), 538937 (2013).
  9. 9.
    Cardone, G., Corradi, A., Foschini, L., Ianniello, R.: Participact: a large-scale crowdsensing platform. IEEE Trans. Emerg. Topics Comput. 4(1), 21–32 (2016)CrossRefGoogle Scholar
  10. 10.
    Cottone, P., Gaglio, S., Lo Re, G., Ortolani, M.: User activity recognition for energy saving in smart homes. Pervasive Mob. Comput. 16(PA), 156–170 (2015)Google Scholar
  11. 11.
    Cottone, P., Lo Re, G., Maida, G., Morana, M.: Motion sensors for activity recognition in an ambient-intelligence scenario. In: 2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 646–651 (2013)Google Scholar
  12. 12.
    Cvetković, B., Janko, V., Romero, A.E., Kafalı, Ö., Stathis, K., Luštrek, M.: Activity recognition for diabetic patients using a smartphone. J. Med. Syst. 40(12), 256 (2016)CrossRefGoogle Scholar
  13. 13.
    De Paola, A., La Cascia, M., Lo Re, G., Morana, M., Ortolani, M.: Mimicking biological mechanisms for sensory information fusion. Biol. Inspired Cogn. Archit. 3, 27–38 (2013)Google Scholar
  14. 14.
    Gaglio, S., Lo Re, G., Morana, M.: Human activity recognition process using 3-D posture data. IEEE Trans. Hum.-Mach. Syst. 45(5), 586–597 (2015)CrossRefGoogle Scholar
  15. 15.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2 edn. Springer, Heidelberg (2009).
  16. 16.
    Hwang, S., Ryu, M., Yang, Y., Lee, N.: Fall detection with three-axis accelerometer and magnetometer in a smartphone. In: Proceedings of the International Conference on Computer Science and Technology, Jeju, Korea, pp. 25–27 (2012)Google Scholar
  17. 17.
    James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning: With Applications in R. Springer Publishing Company, Heidelberg (2014). zbMATHGoogle Scholar
  18. 18.
    Kwon, Y., Kang, K., Bae, C.: Unsupervised learning for human activity recognition using smartphone sensors. Expert Syst. Appl. 41(14), 6067–6074 (2014)CrossRefGoogle Scholar
  19. 19.
    Lester, J., Choudhury, T., Borriello, G.: A practical approach to recognizing physical activities. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) Pervasive 2006. LNCS, vol. 3968, pp. 1–16. Springer, Heidelberg (2006). CrossRefGoogle Scholar
  20. 20.
    Lo Re, G., Morana, M., Ortolani, M.: Improving user experience via motion sensors in an ambient intelligence scenario. In: Proceedings of the 3rd International Conference on Pervasive Embedded Computing and Communication Systems, PECCS, vol. 1, pp. 29–34. INSTICC, SciTePress (2013)Google Scholar
  21. 21.
    Manzi, A., Dario, P., Cavallo, F.: A human activity recognition system based on dynamic clustering of skeleton data. Sensors 17(5), 1100 (2017)CrossRefGoogle Scholar
  22. 22.
    Munther, A., Razif, R., AbuAlhaj, M., Anbar, M., Nizam, S.: A preliminary performance evaluation of K-means, KNN and EM unsupervised machine learning methods for network flow classification. J. Electr. Comput. Eng. 6(2), 778–784 (2016)Google Scholar
  23. 23.
    Paola, A.D., La Cascia, M., Lo Re, G., Morana, M., Ortolani, M.: User detection through multi-sensor fusion in an AmI scenario. In: 2012 15th International Conference on Information Fusion, pp. 2502–2509 (2012)Google Scholar
  24. 24.
    Park, S., Park, J., Al-masni, M., Al-antari, M., Uddin, M.Z., Kim, T.S.: A depth camera-based human activity recognition via deep learning recurrent neural network for health and social care services. Procedia Comput. Sci. 100, 78–84 (2016)CrossRefGoogle Scholar
  25. 25.
    Patel, S., Park, H., Bonato, P., Chan, L., Rodgers, M.: A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 9(1), 21 (2012)CrossRefGoogle Scholar
  26. 26.
    Pinardi, S., Sartori, F., Melen, R.: Integrating knowledge artifacts and inertial measurement unit sensors for decision support. In: KMIS, pp. 307–313 (2016)Google Scholar
  27. 27.
    Quinlan, J.R.: C4. 5: Programs for Machine Learning. Elsevier, Amsterdam (2014)Google Scholar
  28. 28.
    Ravi, N., Dandekar, N., Mysore, P., Littman, M.L.: Activity recognition from accelerometer data. In: Aaai, vol. 5, pp. 1541–1546 (2005)Google Scholar
  29. 29.
    Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45(4), 427–437 (2009)CrossRefGoogle Scholar
  30. 30.
    Subramanya, A., Raj, A., Bilmes, J.A., Fox, D.: Recognizing activities and spatial context using wearable sensors. arXiv preprint arXiv:1206.6869 (2012)
  31. 31.
    Torres-Huitzil, C., Alvarez-Landero, A.: Accelerometer-based human activity recognition in smartphones for healthcare services. In: Adibi, S. (ed.) Mobile Health. Springer Series in Bio-/Neuroinformatics, pp. 147–169. Springer, Heidelberg (2015).

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Federico Concone
    • 1
  • Salvatore Gaglio
    • 1
  • Giuseppe Lo Re
    • 1
  • Marco Morana
    • 1
    Email author
  1. 1.DIID, University of PalermoPalermoItaly

Personalised recommendations