PLATINUm: A New Framework for Planning and Acting

  • Alessandro Umbrico
  • Amedeo Cesta
  • Marta Cialdea Mayer
  • Andrea OrlandiniEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10640)


This paper presents a novel planning framework, called PLATINUm that advances the state of the art with the ability of dealing with temporal uncertainty both at planning and plan execution level. PLATINUm is a comprehensive planning system endowed with (i) a new algorithm for temporal planning with uncertainty, (ii) heuristic search capabilities grounded on hierarchical modelling and (iii) a robust plan execution module to address temporal uncertainty while executing plans. The paper surveys the capabilities of this new planning system that has been recently deployed in a manufacturing scenario to support Human-Robot Collaboration.


  1. 1.
    Barreiro, J., Boyce, M., Do, M., Frank, J., Iatauro, M., Kichkaylo, T., Morris, P., Ong, J., Remolina, E., Smith, T., Smith, D.: EUROPA: a platform for AI planning, scheduling, constraint programming, and optimization. In: The 4th International Competition on Knowledge Engineering for Planning and Scheduling, ICKEPS 2012 (2012)Google Scholar
  2. 2.
    Bit-Monnot, A.: Temporal and hierarchical models for planning and acting in robotics. Ph.D. thesis, Doctorat de l’Université Federale Toulouse Midi-Pyrenees (2016)Google Scholar
  3. 3.
    Cesta, A., Finzi, A., Fratini, S., Orlandini, A., Tronci, E.: Validation and verification issues in a timeline-based planning system. Knowl. Eng. Rev. 25(3), 299–318 (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    Cesta, A., Orlandini, A., Bernardi, G., Umbrico, A.: Towards a planning-based framework for symbiotic human-robot collaboration. In: 21th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE (2016)Google Scholar
  5. 5.
    Cialdea Mayer, M., Orlandini, A.: An executable semantics of flexible plans in terms of timed game automata. In: The 22nd International Symposium on Temporal Representation and Reasoning (TIME). IEEE (2015)Google Scholar
  6. 6.
    Cialdea Mayer, M., Orlandini, A., Umbrico, A.: Planning and execution with flexible timelines: a formal account. Acta Informatica 53(6–8), 649–680 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Freitag, M., Hildebrandt, T.: Automatic design of scheduling rules for complex manufacturing systems by multi-objective simulation-based optimization. CIRP Ann. Manuf. Technol. 65(1), 433–436 (2016)CrossRefGoogle Scholar
  8. 8.
    Ghallab, M., Laruelle, H.: Representation and control in IxTeT, a temporal planner. In: 2nd International Conference on Artificial Intelligence Planning and Scheduling (AIPS), pp. 61–67 (1994)Google Scholar
  9. 9.
    Lallement, R., de Silva, L., Alami, R.: HATP: an HTN planner for robotics. CoRR abs/1405.5345 (2014).
  10. 10.
    Lemai, S., Ingrand, F.: Interleaving temporal planning and execution in robotics domains. In: AAAI 2004, pp. 617–622 (2004)Google Scholar
  11. 11.
    Mansouri, M., Pecora, F.: More knowledge on the table: planning with space, time and resources for robots. In: 2014 IEEE International Conference on Robotics and Automation, ICRA 2014, Hong Kong, China, 31 May–7 June 2014, pp. 647–654. IEEE (2014)Google Scholar
  12. 12.
    Maurtua, I., Pedrocchi, N., Orlandini, A., Fernández, J.D.G., Vogel, C., Geenen, A., Althoefer, K., Shafti, A.: FourByThree: imagine humans and robots working hand in hand. In: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–8, September 2016Google Scholar
  13. 13.
    Morris, P.H., Muscettola, N., Vidal, T.: Dynamic control of plans with temporal uncertainty. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 494–502 (2001)Google Scholar
  14. 14.
    Orlandini, A., Bernardi, G., Cesta, A., Finzi, A.: Planning meets verification and validation in a knowledge engineering environment. Intell. Artif. 8(1), 87–100 (2014)Google Scholar
  15. 15.
    Pellegrinelli, S., Moro, F.L., Pedrocchi, N., Tosatti, L.M., Tolio, T.: A probabilistic approach to workspace sharing for human-robot cooperation in assembly tasks. CIRP Ann. Manuf. Technol. 65(1), 57–60 (2016)CrossRefGoogle Scholar
  16. 16.
    Pellegrinelli, S., Orlandini, A., Pedrocchi, N., Umbrico, A., Tolio, T.: Motion planning and scheduling for human and industrial-robot collaboration. CIRP Ann. Manuf. Technol. 66(1), 1–4 (2017)CrossRefGoogle Scholar
  17. 17.
    Py, F., Rajan, K., McGann, C.: A systematic agent framework for situated autonomous systems. In: AAMAS, pp. 583–590 (2010)Google Scholar
  18. 18.
    Stock, S., Mansouri, M., Pecora, F., Hertzberg, J.: Online task merging with a hierarchical hybrid task planner for mobile service robots. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6459–6464, September 2015Google Scholar
  19. 19.
    Umbrico, A., Cesta, A., Cialdea Mayer, M., Orlandini, A.: Steps in assessing a timeline-based planner. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS, vol. 10037, pp. 508–522. Springer, Cham (2016). CrossRefGoogle Scholar
  20. 20.
    Umbrico, A., Orlandini, A., Mayer, M.C.: Enriching a temporal planner with resources and a hierarchy-based heuristic. In: Gavanelli, M., Lamma, E., Riguzzi, F. (eds.) AI*IA 2015. LNCS, vol. 9336, pp. 410–423. Springer, Cham (2015). CrossRefGoogle Scholar
  21. 21.
    Vidal, T., Fargier, H.: Handling contingency in temporal constraint networks: from consistency to controllabilities. JETAI 11(1), 23–45 (1999)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alessandro Umbrico
    • 1
  • Amedeo Cesta
    • 1
  • Marta Cialdea Mayer
    • 2
  • Andrea Orlandini
    • 1
    Email author
  1. 1.Istituto di Scienze e Tecnologie della CognizioneConsiglio Nazionale delle RicercheRomaItaly
  2. 2.Dipartimento di IngegneriaUniversità degli Studi Roma TreRomaItaly

Personalised recommendations