Advertisement

Automated Planning Techniques for Robot Manipulation Tasks Involving Articulated Objects

  • Alessio Capitanelli
  • Marco Maratea
  • Fulvio Mastrogiovanni
  • Mauro Vallati
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10640)

Abstract

The goal-oriented manipulation of articulated objects plays an important role in real-world robot tasks. Current approaches typically pose a number of simplifying assumptions to reason upon how to obtain an articulated object’s goal configuration, and exploit ad hoc algorithms. The consequence is two-fold: firstly, it is difficult to generalise obtained solutions (in terms of actions a robot can execute) to different target object’s configurations and, in a broad sense, to different object’s physical characteristics; secondly, the representation and the reasoning layers are tightly coupled and inter-dependent.

In this paper we investigate the use of automated planning techniques for dealing with articulated objects manipulation tasks. Such techniques allow for a clear separation between knowledge and reasoning, as advocated in Knowledge Engineering. We introduce two PDDL formulations of the task, which rely on conceptually different representations of the orientation of the objects. Experiments involving several planners and increasing size objects demonstrate the effectiveness of the proposed models, and confirm its exploitability when embedded in a real-world robot software architecture.

References

  1. 1.
    Berenson, D.: Manipulation of deformable objects without modelling and simulating deformation. In: Proceedings of the 2013 IEEE-RSJ International Conference on Intelligent Robots and Systems (IROS 2015), Tokyo, Japan, November 2013Google Scholar
  2. 2.
    Borgo, S., Cesta, A., Orlandini, A., Umbrico, A.: A planning-based architecture for a reconfigurable manufacturing system. In: Coles, A.J., Coles, A., Edelkamp, S., Magazzeni, D., Sanner, S. (eds.) Proceedings of the Twenty-Sixth International Conference on Automated Planning and Scheduling, ICAPS 2016, pp. 358–366. AAAI Press (2016)Google Scholar
  3. 3.
    Buoncompagni, L., Mastrogiovanni, F.: A software architecture for object perception and semantic representation. In: Proceedings of the Second Italian Workshop on Artificial Intelligence and Robotics (AIRO 2015), Ferrara, Italy, September 2015Google Scholar
  4. 4.
    Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B., Carrera, A., Palomeras, N., Hurtós, N., Carreras, M.: ROSPlan: planning in the robot operating system. In: Proceedings of the Twenty-Fifth International Conference on Automated Planning and Scheduling, ICAPS, pp. 333–341 (2015)Google Scholar
  5. 5.
    Dang, H., Allen, P.: Robot learning of everyday object manipulations via human demonstrations. In: Proceedings of the 2010 IEEE-RSJ International Conference on Intelligent Robots and Systems (IROS 2010), Taipei, Taiwan, October 2010Google Scholar
  6. 6.
    Elbrechter, C., Haschke, R., Ritter, H.: Folding paper with anthropomorphic robot hands using real-time physics-based modeling. In: Proceedings of the 2012 IEEE-RAS International Conference on Humanoid Robotics (HUMANOIDS 2012), Osaka, Japan, October 2012Google Scholar
  7. 7.
    Frank, B., Schmedding, R., Stachniss, C., Teschner, M., Burgard, W.: Learning the elasticity parameters of deformable objects with a manipulation robot. In: Proceedings of the 2010 IEEE-RSJ International Conference on Intelligent Robots and Systems (IROS 2010), Taipei, Taiwan, October 2010Google Scholar
  8. 8.
    Gerevini, A.E., Saetti, A., Serina, I.: Planning through stochastic local search and temporal action graphs in LPG. J. Artif. Intell. Res. 20, 239–290 (2003)zbMATHGoogle Scholar
  9. 9.
    Ghallab, M., Nau, D., Traverso, P.: Automated Planning, Theory and Practice. Morgan Kaufmann Publishers, Burlington (2004)zbMATHGoogle Scholar
  10. 10.
    Howey, R., Long, D., Fox, M.: VAL: automatic plan validation, continuous effects and mixed initiative planning using PDDL. In: 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pp. 294–301 (2004)Google Scholar
  11. 11.
    Jimenez, P.: Survey on model-based manipulation planning of deformable objects. Robot. Comput.-Integr. Manuf. 28(2), 154–163 (2012)CrossRefGoogle Scholar
  12. 12.
    Knapper, R., Layton, T., Romanishin, J., Rus, D.: Ikeabot: an autonomous multi-robot coordinated furniture assembly system. In: Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA 2013), Karlsruhe, Germany, May 2013Google Scholar
  13. 13.
    Krotzsch, M., Simancik, F., Horrocks, I.: A description logic primer. arXiv:1201.4089v3 (2013)
  14. 14.
    Lemaignan, S., Ros, R., Mösenlechner, L., Alami, R., Beetz, M.: Oro, a knowledge management platform for cognitive architectures in robotics. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3548–3553. IEEE (2010)Google Scholar
  15. 15.
    Lipovetzky, N., Ramirez, M., Muise, C., Geffner, H.: Width and inference based planners: SIW, BFS(f), and PROBE. In: Proceedings of the 8th International Planning Competition (IPC 2014) (2014)Google Scholar
  16. 16.
    McDermott, D.: The 1998 AI planning systems competition. AI Mag. 21(2), 35–55 (2000)Google Scholar
  17. 17.
    Newman, W., Chong, Z.H., Du, C., Hung, R., Lee, K.H., Ma, L., Ng, T., Swetenham, C., Tjoeng, K., Wang, W.: Autonomous valve turning with an Atlas humanoid robot. In: Proceedings of the 2014 IEEE-RAS International Conference on Humanoid Robotics (HUMANOIDS 2014), Madrid, Spain, November 2014Google Scholar
  18. 18.
    Rintanen, J.: Madagascar: scalable planning with SAT. In: Proceedings of the 8th International Planning Competition (IPC 2014) (2014)Google Scholar
  19. 19.
    Schulman, J., Ho, J., Lee, C., Abbeel, P.: Learning from demonstrations through the use of non-rigid registration. In: Inaba, M., Corke, P. (eds.) Robotics Research. STAR, vol. 114, pp. 339–354. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-28872-7_20 CrossRefGoogle Scholar
  20. 20.
    Smith, C., Karayiannidis, Y., Nalpantidis, L., Gratal, X., Qi, P., Dimarogonas, D., Kragic, D.: Dual arm manipulation: a survey. Robot. Auton. Syst. 60(10), 1340–1353 (2012)CrossRefGoogle Scholar
  21. 21.
    Tenorth, M., Beetz, M.: Representations for robot knowledge in the KnowRob framework. Artif. Intell. 247, 151–169 (2017)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Vallati, M., Chrpa, L., Grzes, M., McCluskey, T., Roberts, M., Sanner, S.: The 2014 international planning competition: progress and trends. AI Mag. 36(3), 90–98 (2015)CrossRefGoogle Scholar
  23. 23.
    Vidal, V.: YAHSP3 and YAHSP3-MT in the 8th international planning competition. In: Proceedings of the 8th International Planning Competition (IPC 2014) (2014)Google Scholar
  24. 24.
    Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83 (1945)CrossRefGoogle Scholar
  25. 25.
    Yamakawa, Y., Namiki, A., Ishikawa, M.: Dynamic high-speed knotting of a rope by a manipulator. Int. J. Adv. Rob. Syst. 10, 1–12 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alessio Capitanelli
    • 1
  • Marco Maratea
    • 1
  • Fulvio Mastrogiovanni
    • 1
  • Mauro Vallati
    • 2
  1. 1.DIBRISUniv. degli Studi di GenovaGenoaItaly
  2. 2.University of HuddershieldHuddersfieldUK

Personalised recommendations