Advertisement

Towards a Cognitive Semantics of Types

  • Daniele Porello
  • Giancarlo Guizzardi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10640)

Abstract

Types are a crucial concept in conceptual modelling, logic, and knowledge representation as they are an ubiquitous device to understand and formalise the classification of objects. We propose a logical treatment of types based on a cognitively inspired modelling that accounts for the amount of information that is actually available to a certain agent in the task of classification. We develop a predicative modal logic whose semantics is based on conceptual spaces that model the actual information that a cognitive agent has about objects, types, and the classification of an object under a certain type. In particular, we account for possible failures in the classification, for the lack of sufficient information, and for some aspects related to vagueness.

Keywords

Types Conceptual spaces Sortals Identity Vagueness 

References

  1. 1.
    Aisbett, J., Gibbon, G.: A general formulation of conceptual spaces as a meso level representation. Artif. Intell. 133(1), 189–232 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Akama, S., Murai, T.: Rough set semantics for three-valued logics. In: Nakamatsu, K., Abe, J. (eds.) Advances in Logic Based Intelligent Systems. Frontiers in Artificial Intelligence and Applications, vol. 132, pp. 242–247. IOS press, Amsterdam (2005)Google Scholar
  3. 3.
    Avron, A.: Natural 3-valued logicscharacterization and proof theory. J. Symb. Log. 56(01), 276–294 (1991)CrossRefzbMATHGoogle Scholar
  4. 4.
    Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic. Springer Science & Business Media, Dordrecht (2012). vol. 277zbMATHGoogle Scholar
  5. 5.
    Frege, G.: On function and concept. In: Translations from the Philosophical Writings of Gottlob Frege, 3rd edn., pp. 1–128. Blackwell, Oxford (1980)Google Scholar
  6. 6.
    Gärdenfors, P.: Conceptual Spaces: the Geometry of Thought. MIT Press, Cambridge (2000)Google Scholar
  7. 7.
    Guizzardi, G.: Ontological patterns, anti-patterns and pattern languages for next-generation conceptual modeling. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824, pp. 13–27. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12206-9_2 Google Scholar
  8. 8.
    Guizzardi, G.: Logical, ontological and cognitive aspects of object types and cross-world identity with applications to the theory of conceptual spaces. In: Zenker, F., Gärdenfors, P. (eds.) Applications of Conceptual Spaces. SYLI, vol. 359, pp. 165–186. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-15021-5_9 Google Scholar
  9. 9.
    Hájek, P.: Metamathematics of Fuzzy Logic. Springer Science & Business Media, Dordrecht (1998).  https://doi.org/10.1007/978-94-011-5300-3. vol. 4CrossRefzbMATHGoogle Scholar
  10. 10.
    Jones, S.S., Koehly, L.M.: Multidimensional scaling. In: Keren, G., Lewis, C. (eds.) A Handbook for Data Analysis in the Behavioral Sciences, pp. 95–163. Lawrence Erlbaum Associates, New Jersey (1993)Google Scholar
  11. 11.
    Kripke, S.: Naming and Necessity, rev. edn. Harvard University Press, Cambridge (1980)Google Scholar
  12. 12.
    Lowe, E.: Kinds of Being: A Study of Individuation, Identity and the Logic of Sortal Terms. Blackwell, Oxford (1989)Google Scholar
  13. 13.
    Markman, E.: Categorization and Naming in Children. MIT Press, Cambridge (1989)Google Scholar
  14. 14.
    Masolo, C., Porello, D.: A cognitive view of relevant implication. In: Lieto, A., Battaglino, C., Radicioni, D.P., Sanguinetti, M. (eds.) Proceedings of the 3rd International Workshop on Artificial Intelligence and Cognition, pp. 40–53. CEUR, Turin (2015)Google Scholar
  15. 15.
    Masolo, C., Porello, D.: Understanding predication in conceptual spaces. In: Formal Ontology in Information Systems - Proceedings of the 9th International Conference, FOIS 2016, Annecy, France, 6–9 July 2016, pp. 139–152 (2016). https://doi.org/10.3233/978-1-61499-660-6-139
  16. 16.
    Mcnamara, J.: Logic and cognition. In: The Logical Foundations of Cognition, 3rd edn., pp. 1–128. Blackwell, Oxford (1994)Google Scholar
  17. 17.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Springer, Netherlands (1991).  https://doi.org/10.1007/978-94-011-3534-4. vol. 9CrossRefzbMATHGoogle Scholar
  18. 18.
    Porello, D.: Modelling equivalent definitions of concepts. In: Christiansen, H., Stojanovic, I., Papadopoulos, G.A. (eds.) CONTEXT 2015. LNCS, vol. 9405, pp. 506–512. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25591-0_40 CrossRefGoogle Scholar
  19. 19.
    Raubal, M.: Formalizing conceptual spaces. In: Formal ontology in information systems. In: Proceedings of the Third International Conference, FOIS 2004, vol. 114, pp. 153–164 (2004)Google Scholar
  20. 20.
    Smith, E., Medin, D.: Categories and Concepts. Harvard University Press, Cambridge (1981)CrossRefGoogle Scholar
  21. 21.
    Wiggins, D.: Sameness and Substance Renewed. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  22. 22.
    Xu, F., Carey, S., Quint, N.: The emergence of kind-based object individuation in infancy. Cogn. Psychol. 40, 155–190 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Free University of Bozen-BolzanoBolzanoItaly

Personalised recommendations