Advertisement

Reasoning over RDF Knowledge Bases: Where We Are

  • Simona Colucci
  • Francesco M. Donini
  • Eugenio Di Sciascio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10640)

Abstract

This paper aims at investigating the state of realization of the Semantic Web initiative, through the analysis of some applications taking background knowledge from RDF datasets. In particular, it shows the design and the implementation of an extended experiment, which demonstrates that input datasets are often used only as data structures, without taking into account the logical formalization of properties involved in such RDF models.

References

  1. 1.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 248(4), 34–43 (2001)CrossRefGoogle Scholar
  2. 2.
    Bischof, S., Martin, C., Polleres, A., Schneider, P.: Collecting, integrating, enriching and republishing open city data as linked data. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 57–75. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25010-6_4 CrossRefGoogle Scholar
  3. 3.
    Brickley, D., Guha, R.: RDF Schema 1.1. W3C Recommendation (2014). https://www.w3.org/TR/rdf-schema/
  4. 4.
    Colucci, S., Donini, F., Giannini, S., Di Sciascio, E.: Defining and computing Least Common Subsumers in RDF. Web Semant.: Sci. Serv. Agents World Wide Web 39, 62–80 (2016).  https://doi.org/10.1016/j.websem.2016.02.001 CrossRefGoogle Scholar
  5. 5.
    De Vries, G.K.D., De Rooij, S.: A fast and simple graph kernel for RDF. In: Proceedings of the 2013 International Conference on Data Mining on Linked Data, DMoLD 2013, vol. 1082, pp. 23–34. CEUR-WS.org, Aachen (2013). http://dl.acm.org/citation.cfm?id=3053776.3053781
  6. 6.
    Deza, M.M., Deza, E.: Encyclopedia of Distances (2009)Google Scholar
  7. 7.
    Hayes, P., Patel-Schneider, P.F.: RDF semantics, W3C recommendation (2014). http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/
  8. 8.
    Hofmann, M., Klinkenberg, R. (eds.): RapidMiner: Data Mining Use Cases and Business Analytics Applications. Chapman & Hall/CRC Data Mining and Knowledge Discovery Series. CRC Press, Boca Raton (2013)Google Scholar
  9. 9.
    Paulheim, H., Fümkranz, J.: Unsupervised generation of data mining features from linked open data. In: Proceedings of the 2nd International Conference on Web Intelligence, Mining and Semantics, p. 31. ACM (2012)Google Scholar
  10. 10.
    Perez-Rey, D., Anguita, A., Crespo, J.: OntoDataClean: ontology-based integration and preprocessing of distributed data. In: Maglaveras, N., Chouvarda, I., Koutkias, V., Brause, R. (eds.) ISBMDA 2006. LNCS, vol. 4345, pp. 262–272. Springer, Heidelberg (2006).  https://doi.org/10.1007/11946465_24 CrossRefGoogle Scholar
  11. 11.
    Qi, Z., Wang, H., Meng, F., Li, J., Gao, H.: Capture missing values with inference on knowledge base. In: Bao, Z., Trajcevski, G., Chang, L., Hua, W. (eds.) DASFAA 2017. LNCS, vol. 10179, pp. 185–194. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-55705-2_14 CrossRefGoogle Scholar
  12. 12.
    Shadbolt, N., Hall, W., Berners-Lee, T.: The semantic web revisited. IEEE Intell. Syst. 21(3), 96–101 (2006)CrossRefGoogle Scholar
  13. 13.
    W3C OWL Working Group: OWL 2 Web Ontology Language Document Overview, 2nd edn. W3C Recommendation (2012). https://www.w3.org/TR/owl2-overview/

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Simona Colucci
    • 1
  • Francesco M. Donini
    • 2
  • Eugenio Di Sciascio
    • 1
  1. 1.DEIPolitecnico di BariBariItaly
  2. 2.DISUCOMUniversità della TusciaViterboItaly

Personalised recommendations