Service Composition in Stochastic Settings

  • Ronen I. Brafman
  • Giuseppe De GiacomoEmail author
  • Massimo Mecella
  • Sebastian Sardina
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10640)


With the growth of the Internet-of-Things and online Web services, more services with more capabilities are available to us. The ability to generate new, more useful services from existing ones has been the focus of much research for over a decade. The goal is, given a specification of the behavior of the target service, to build a controller, known as an orchestrator, that uses existing services to satisfy the requirements of the target service. The model of services and requirements used in most work is that of a finite state machine. This implies that the specification can either be satisfied or not, with no middle ground. This is a major drawback, since often an exact solution cannot be obtained. In this paper we study a simple stochastic model for service composition: we annotate the target service with probabilities describing the likelihood of requesting each action in a state, and rewards for being able to execute actions. We show how to solve the resulting problem by solving a certain Markov Decision Process (MDP) derived from the service and requirement specifications. The solution to this MDP induces an orchestrator that coincides with the exact solution if a composition exists. Otherwise it provides an approximate solution that maximizes the expected sum of values of user requests that can be serviced. The model studied although simple shades light on composition in stochastic settings and indeed we discuss several possible extensions.


  1. 1.
    De Giacomo, G., Mecella, M., Patrizi, F.: Automated service composition based on behaviors: the Roman model. In: Bouguettaya, A., Sheng, Q., Daniel, F. (eds.) Web Services Foundations, pp. 189–214. Springer, New York (2014). CrossRefGoogle Scholar
  2. 2.
    Bronsted, J., Hansen, K.M., Ingstrup, M.: Service composition issues in pervasive computing. IEEE Pervasive Comput. 9(1), 62–70 (2010)CrossRefGoogle Scholar
  3. 3.
    Medjahed, B., Bouguettaya, A., Elmagarmid, A.: Composing web services on the semantic web. Very Larg. Data Base J. 12(4), 333–351 (2003)CrossRefGoogle Scholar
  4. 4.
    Yang, J., Papazoglou, M.: Service components for managing the life-cycle of service compositions. Inf. Syst. 29(2), 97–125 (2004)CrossRefGoogle Scholar
  5. 5.
    Cardoso, J., Sheth, A.: Introduction to semantic web services and web process composition. In: Cardoso, J., Sheth, A. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 1–13. Springer, Heidelberg (2005). CrossRefGoogle Scholar
  6. 6.
    Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.: Automating DAML-S web services composition using SHOP2. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 195–210. Springer, Heidelberg (2003). CrossRefGoogle Scholar
  7. 7.
    Pistore, M., Marconi, A., Bertoli, P., Traverso, P.: Automated composition of web services by planning at the knowledge level. In: IJCAI (2005)Google Scholar
  8. 8.
    McIlraith, S., Son, T.: Adapting golog for composition of semantic web services. In: KR (2002)Google Scholar
  9. 9.
    Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic composition of E-services that export their behavior. In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 43–58. Springer, Heidelberg (2003). CrossRefGoogle Scholar
  10. 10.
    Hu, Y., De Giacomo, G.: A generic technique for synthesizing bounded finite-state controllers. In: ICAPS (2013)Google Scholar
  11. 11.
    De Giacomo, G., Patrizi, F., Sardiña, S.: Automatic behavior composition synthesis. Artif. Intell. 196, 106–142 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Hull, R.: Artifact-centric business process models: brief survey of research results and challenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332, pp. 1152–1163. Springer, Heidelberg (2008). CrossRefGoogle Scholar
  13. 13.
    Su, J.: Semantic web services: composition and analysis. IEEE Data Eng. Bull. 31(3) (2008)Google Scholar
  14. 14.
    Yadav, N., Sardiña, S.: Decision theoretic behavior composition. In: AAMAS (2011)Google Scholar
  15. 15.
    Menasce, D.: QoS issues in web services. IEEE Internet Comput. 6(6), 72–75 (2002)CrossRefGoogle Scholar
  16. 16.
    Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-aware middleware for web services composition. IEEE Trans. Softw. Eng. 30(5), 311–327 (2004)CrossRefGoogle Scholar
  17. 17.
    De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces. In: IJCAI (2013)Google Scholar
  18. 18.
    Nain, S., Lustig, Y., Vardi, M.Y.: Synthesis from probabilistic components. Log. Methods Comput. Sci. 10(2) (2014)Google Scholar
  19. 19.
    Muscholl, A., Walukiewicz, I.: A lower bound on web services composition. Log. Methods Comput. Sci. 4(2) (2008)Google Scholar
  20. 20.
    Yadav, N., Felli, P., De Giacomo, G., Sardiña, S.: Supremal realizability of behaviors with uncontrollable exogenous events. In: IJCAI, pp. 1176–1182 (2013)Google Scholar
  21. 21.
    Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., Traverso, P.: Planning and monitoring web service composition. In: Bussler, C., Fensel, D. (eds.) AIMSA 2004. LNCS, vol. 3192, pp. 106–115. Springer, Heidelberg (2004). CrossRefGoogle Scholar
  22. 22.
    Bacchus, F., Boutilier, C., Grove, A.J.: Rewarding behaviors. In: AAAI (1996)Google Scholar
  23. 23.
    Thiébaux, S., Gretton, C., Slaney, J.K., Price, D., Kabanza, F.: Decision-theoretic planning with non-Markovian rewards. J. Artif. Intell. Res. 25, 17–74 (2006)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Lacerda, B., Parker, D., Hawes, N.: Optimal policy generation for partially satisfiable co-safe LTL specifications. In: IJCAI (2015)Google Scholar
  25. 25.
    De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In: IJCAI (2015)Google Scholar
  26. 26.
    De Giacomo, G., Vardi, M.Y.: LTL\({}_{\text{f}}\) and LDL\({}_{\text{ f }}\) synthesis under partial observability. In: IJCAI (2016)Google Scholar
  27. 27.
    Torres, J., Baier, J.A.: Polynomial-time reformulations of LTL temporally extended goals into final-state goals. In: IJCAI (2015)Google Scholar
  28. 28.
    Camacho, A., Triantafillou, E., Muise, C., Baier, J.A., McIlraith, S.: Non-deterministic planning with temporally extended goals: LTL over finite and infinite traces. In: AAAI (2017)Google Scholar
  29. 29.
    Fritz, C., McIlraith, S.A.: Monitoring plan optimality during execution. In: ICAPS (2007)Google Scholar
  30. 30.
    Baier, J.A., Fritz, C., Bienvenu, M., McIlraith, S.A.: Beyond classical planning: procedural control knowledge and preferences in state-of-the-art planners. In: AAAI (2008)Google Scholar
  31. 31.
    Levesque, H.J., Reiter, R., Lesperance, Y., Lin, F., Scherl, R.: GOLOG: a logic programming language for dynamic domains. J. Log. Program. 31, 59–83 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    De Giacomo, G., Di Ciccio, C., Felli, P., Hu, Y., Mecella, M.: Goal-based composition of stateful services for smart homes. In: OTM (2012)Google Scholar
  33. 33.
    Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18, 194–211 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    De Giacomo, G., Gerevini, A.E., Patrizi, F., Saetti, A., Sardiña, S.: Agent planning programs. Artif. Intell. 231, 64–106 (2016)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ronen I. Brafman
    • 1
  • Giuseppe De Giacomo
    • 2
    Email author
  • Massimo Mecella
    • 2
  • Sebastian Sardina
    • 3
  1. 1.Ben-Gurion UniversityBeer-ShevaIsrael
  2. 2.Sapienza University of RomeRomeItaly
  3. 3.RMIT UniversityMelbourneAustralia

Personalised recommendations