Skip to main content

Toxicological Impact of Carbon Nanomaterials on Plants

  • Chapter
  • First Online:

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW))

Abstract

The fast growth of nanotechnology has resulted in the production and use of engineered nanoparticles with unique physical and chemical properties in various fields. The increased utilization of engineered nanoparticles enhances the risks associated with their release into the environment. The smaller size and modified physico-chemical properties raise concerns about their entry and adverse effects in plants. For instance, studies have shown that nanomaterials can be absorbed and translocated within plants. Since plants represent a major component of the ecosystem, the accumulation of engineered nanoparticles in plants is a threat to plants and the food chain.

This chapter reviews phytotoxic effect of carbon nanomaterials under in vitro and in vivo exposure conditions. Carbon nanomaterials are widely incorporated in commercial products used in agriculture. Recent studies have been conducted to test the toxic effects of carbon nanomaterials either alone or in combination with other chemicals in plants. Results reveal that the effect of carbon nanomaterials in plants are intricate and challenging and vary between different plant species, type of the nanomaterial and concentrations tested. Carbon nanomaterials were evidenced to penetrate through seed coats, enter into the plant cells and translocate into different plant parts. Exposure to carbon nanomaterials decreases seed germination, root growth and changes the roots architecture. Carbon nanomaterials inhibits seedling growth and changes morphological, physiological, biochemical, molecular, nutritional and genetic levels in plants. Modulation in the expression of genes related to cell division and plant development were also reported.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adhikari T, Biswas AK, Kundu S (2012) Nano-fertilizer-a new dimension in agriculture. Indian J Fert 6:22–24

    Google Scholar 

  • Anjum NA, Singh N, Singh MK, Shah ZA, Duarte AC, Pereira E, Ahmad I (2013) Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L.) J Nanopart Res 15:1770

    Article  CAS  Google Scholar 

  • Anjum NA, Singh N, Singh MK, Sayeed I, Duarte AC, Pereira E, Ahmad I (2014) Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.) Sci Total Environ 15:834–841

    Article  CAS  Google Scholar 

  • Avanasi R, Jackson WA, Sherwin B, Mudge JF, Anderson TA (2014) C60 fullerene soil sorption, biodegradation, and plant uptake. Environ Sci Technol 48:2792–2797

    Article  CAS  Google Scholar 

  • Basiuk VA, Basiuk EV, Shishkova S, Dubrovsky JG (2013) Systemic phytotoxic impact of as-prepared carbon nanotubes in long-term assays: a case study of Parodia ayopayana (Cactaceae). Sci Adv Mater 5:1337–1345

    Article  CAS  Google Scholar 

  • Begum P, Fugetsu B (2012) Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L.) and the role of ascorbic acid as an antioxidant. J Hazard Mater 243:212–222

    Article  CAS  Google Scholar 

  • Begum P, Fugetsu B (2013) Induction of cell death by graphene in Arabidopsis thaliana (Columbia ecotype) T87 cell suspensions. J Hazard Mater 15(260):1032–1041

    Article  CAS  Google Scholar 

  • Begum P, Ikhtiari RI, Fugetsu B (2011) Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach and lettuce. Carbon 49:3907–3919

    Article  CAS  Google Scholar 

  • Burlaka OM, Pirko YV, Yemets AI, Blume YB (2015) Plant genetic transformation using carbon nanotubes for DNA delivery. Cytol Genet 49:349–357

    Article  Google Scholar 

  • Canas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee H, Olszyk D (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931

    Article  CAS  Google Scholar 

  • Chai M, Shi F, Li R, Liu L, Liu Y, Liu F (2013) Interactive effects of cadmium and carbon nanotubes on the growth and metal accumulation in a halophyte Spartina alterniflora (Poaceae). Plant Growth Regul 71:171–179

    Article  CAS  Google Scholar 

  • Cheng F, Liu YF, GY L, Zhang XK, Xie LL, Yuan CF, BB X (2016) Graphene oxide modulates root growth of Brassica napus L. and regulates ABA and IAA concentration. Plant Physiol 193:57–63

    Article  CAS  Google Scholar 

  • Chichiriccò G, Poma A (2015) Penetration and toxicity of nanomaterials in higher plants. Nano 5:851–873

    Google Scholar 

  • Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35:52–71

    Article  CAS  Google Scholar 

  • Dang S, Liu Q, Zhang X, He K, Wang C, Fang X (2012) Comparative cytotoxicity study of water-soluble carbon nanoparticles on plant cells. J Nanosci Nanotechnol 12:4478–4484

    Article  CAS  Google Scholar 

  • Dasgupta N, Ramalingam C (2016) Silver nanoparticle antimicrobial activity explained by membrane rupture and reactive oxygen generation. Environ Chem Lett 14(4):477–485

    Google Scholar 

  • Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400

    Google Scholar 

  • Dasgupta N, Ranjan S, Rajendran B, Manickam V, Ramalingam C, Avadhani GS, Kumar A (2016) Thermal co-reduction approach to vary size of silver nanoparticle: its microbial and cellular toxicology. Environ Sci Pollut Res 23(5):4149–4163

    Google Scholar 

  • Dasgupta N, Ranjan S, Ramalingam C (2017) Applications of nanotechnology in agriculture and water quality management. Environ Chem Lett 15(4):591–605

    Google Scholar 

  • De Heer WA, Chatelain A, Ugarte DA (1995) Carbon nanotube field-emission electron source. Science 270:1179

    Article  Google Scholar 

  • De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    Article  CAS  Google Scholar 

  • Franklin NR, Li YM, Chen RJ, Javey A, Dai HJ (2001) Biological properties of carbon nanotubes. Appl Phys Lett 79:571

    Article  CAS  Google Scholar 

  • Fuhrer MS, Nygård J, Shih L, Forero M, Yoon YG, Mazzoni MSC, Choi H, Ihm J, Louie SG, Zettl A, McEuen PL (2000) Crossed nanotube junctions. Science 288:494

    Article  CAS  Google Scholar 

  • Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds and combined super structures. Chem Rev 115:4744–4822

    Article  CAS  Google Scholar 

  • Ghodake G, Seo YD, Park DH, Lee DS (2010) Phytotoxicity of carbon nanotubes assessed by Brassica juncea and Phaseolus mungo. J Nanoelectron Optoelectron 5:157–160

    Article  CAS  Google Scholar 

  • Ghosh M, Chakraborty A, Bandyopadhyay M, Mukherjee A (2011) Multi-walled carbon nanotubes (MWCNT): induction of DNA damage in plant and mammalian cells. J Hazard Mater 15:327–336

    Article  CAS  Google Scholar 

  • Ghosh M, Bhadra S, Adegoke A, Bandyopadhyay M, Mukherjee A (2015) MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper methylation. Mutat Res 774:49–58

    Article  CAS  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792

    Article  CAS  Google Scholar 

  • Gopal A, Kumar R, Goswami A (2012) Nano-pesticides-a recent approach for pest control. The JPPS 4:1–7

    Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  Google Scholar 

  • Hamdi H, De La Torre-Roche R, Hawthorne J, White JC (2015) Impact of non-functionalized and amino-functionalized multiwall carbon nanotubes on pesticide uptake by lettuce (Lactuca sativa L.) Nanotoxicol 9:172–180

    Article  CAS  Google Scholar 

  • Hu ZS, Oskam G, Searson PC (2003) Influence of solvent on the growth of ZnO nanoparticles. J Colloid Interface Sci 263:454–460

    Article  CAS  Google Scholar 

  • Hu X, Kang J, Lu K, Zhou R, Mu L, Zhou Q (2014) Graphene oxide amplifies the phytotoxicity of arsenic in wheat. Sci Rep 19:6122

    Google Scholar 

  • Hurt RH, Monthioux M, Kane A (2006) Toxicology of carbon nanomaterials: status, trends, and perspectives on the special issue. Carbon 44:1028–1033

    Article  CAS  Google Scholar 

  • Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanobiotech 12:16

    Article  CAS  Google Scholar 

  • Islam AE, Rogers JA, Alam MA (2015) Recent progress in obtaining semiconducting single walled carbon nanotubes for transistor applications. Adv Mater 27:7908–7937

    Article  CAS  Google Scholar 

  • Jain A, Ranjan S, Dasgupta N, Ramalingam C (2016) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr 15:1–21

    Google Scholar 

  • Janardan S, Suman P, Ragul G, Anjaneyulu U, Shivendu R, Dasgupta N, Ramalingam C, Swamiappan S, Vijayakrishna K, Sivaramakrishna A (2016) Assessment on the antibacterial activity of nanosized silica derived from hypercoordinated silicon(iv) precursors. RSC Adv 6(71):66394–66406

    Google Scholar 

  • Jarosz P, Schauerman C, Alvarenga J, Moses B, Mastrangelo T, Raffaelle R, Ridgley R, Landi B (2011) Carbon nanotube wires and cables: near-term applications and future perspectives. Nanoscale 3:4542–4553

    Article  CAS  Google Scholar 

  • Jiang Y, Hua Z, Zhao Y, Liu Q, Wang F, Zhang Q (2014) The effect of carbon nanotubes on rice seed germination and root growth (Conference Paper). Lect Notes in Elect Eng 250:1207–1212

    Google Scholar 

  • Keller AA, Lazareva A (2014) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1:65–70

    Article  CAS  Google Scholar 

  • Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1–17

    Article  Google Scholar 

  • Kemp K, Kimball B, Rybczynski J, Huang ZP, PF W, Steeves D, Sennett M, Giersig M, Rao DVGLN, Carnahan DL, Wang DZ, Lao JY, Li WZ, Ren ZF (2003) Photonic crystals based on periodic arrays of aligned carbon nanotubes. Nano Lett 3:13

    Article  CAS  Google Scholar 

  • Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135

    Article  CAS  Google Scholar 

  • Kikuchi K, Nakahara N, Wakabayashi T, Suzuki S, Shiromaru H, Miyake Y et al (1992) NMR characterization of isomers of C78, C82 and C84 fullerenes. Nature 357:142–145

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  • Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 5:7965–7973

    Article  CAS  Google Scholar 

  • Larue C, Pinault M, Czarny B, Georgin D, Jaillard D, Bendiab N, Mayne-L’Hermite M, Taran F, Dive V, Carrière M (2012) Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rape seed. J Hazard Mater 227:155–163

    Article  CAS  Google Scholar 

  • Lijima S (1991) Helicoidal microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles, inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  Google Scholar 

  • Lin C, Fugetsu B, Su Y, Watari F (2009a) Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. J Hazard Mater 170:578–583

    Article  CAS  Google Scholar 

  • Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009b) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132

    Article  CAS  Google Scholar 

  • Liu S, Wei L, Hao L, Fang N, Chang MW, Xu R, Yang Y, Chen Y (2009a) Sharper and faster ‘nano darts’ kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3:3891–3902

    Article  CAS  Google Scholar 

  • Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009b) Carbon nanotubes as molecular transpoters for walled plant cells. Nano Lett 9:1007–1010

    Article  CAS  Google Scholar 

  • Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009c) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010

    Article  CAS  Google Scholar 

  • Liu Q, Zhao Y, Wan Y, Zheng J, Zhang X, Wang C, Fang X, Lin J (2010a) Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level. ACS Nano 4:5743–5748

    Article  CAS  Google Scholar 

  • Liu Q, Zhao Y, Wan Y, Zheng J, Zhang X, Wang C, Fang X, Lin J (2010b) Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level. ACS Nano 4:5743–5748

    Article  CAS  Google Scholar 

  • Liu Q, Zhang X, Zhao Y, Lin J, Shu C, Wang C, Fang X (2013) Fullerene-induced increase of glycosyl residue on living plant cell wall. Environ Sci Technol 47:7490–7498

    Article  CAS  Google Scholar 

  • Liu H, Wang J, Feng Z, Lin Y, Zhang L, Su D (2015a) Facile synthesis of au nanoparticles embedded in an ultrathin hollow graphene nanoshell with robust catalytic performance. Small 11:5059–5064

    Article  CAS  Google Scholar 

  • Liu S, Wei H, Li Z, Li S, Yan H, He Y, Tian Z (2015b) Effects of graphene on germination and seedling morphology in rice. J Nanosci Nanotechnol 15:2695–2701

    Article  CAS  Google Scholar 

  • Loutfy RO, Lowe TP, Moravsky AP, Katagiri S (2002) Commercial production of fullerenes and carbon nanoparticles. In: Perspectives of fullerene nanotechnology. Springer, Dordrecht, pp 35–46

    Google Scholar 

  • Ma XM, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    Article  CAS  Google Scholar 

  • Maddinedi SB, Mandal BK, Ranjan S, Dasgupta N (2015) Diastase assisted green synthesis of size-controllable gold nanoparticles. RSC Adv 5(34):26727–26733

    Google Scholar 

  • Maddinedi SB, Mandal BK, Patil SH, Andhalkar VV, Ranjan S, Dasgupta N (2017) Diastase induced green synthesis of bilayered reduced graphene oxide and its decoration with gold nanoparticles. J Photochem Photobiol B Biol 166:252–258

    Google Scholar 

  • Martínez-Ballesta MC, Zapata L, Chalbi N, Carvajal M (2016) Multiwalled carbon nano tubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. J Nanobiotech 14:42

    Article  CAS  Google Scholar 

  • Mauter M, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859

    Article  CAS  Google Scholar 

  • Mondal A, Basu R, Das S, Nandi P (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res 13:4519–4528

    Article  CAS  Google Scholar 

  • Mushtaq YK (2011) Effect of nanoscale Fe(3)O(4), TiO(2) and carbon particles on cucumber seed germination. J Environ Sci Health A Tox Hazard Subst Environ Eng 46:1732–1735

    Article  CAS  Google Scholar 

  • Oleszczuk P, Josko I, Xing BS (2011) The toxicity to plants of the sewage sludges containing multiwalled carbon nanotubes. J Hazard Mater 186:436–442

    Article  CAS  Google Scholar 

  • Pourkhaloee A, Haghighi M, Saharkhiz MJ, Jouzi H, Doroodmand MM (2011) Carbon nanotubes can promote seed germination via seed coat penetration. Seed Technol 33:155–169

    Google Scholar 

  • Ranjan S, Ramalingam C (2016) Titanium dioxide nanoparticles induce bacterial membrane rupture by reactive oxygen species generation. Environ Chem Lett 14(4):487–494

    Google Scholar 

  • Ranjan S, Dasgupta N, Chakraborty AR, Melvin Samuel S, Ramalingam C, Shanker R, Kumar A (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16(6):1–23

    Google Scholar 

  • Ranjan S, Dasgupta N, Rajendran B, Avadhani GS, Ramalingam C, Kumar A (2016) Microwave-irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation. Environ Sci Pollut Res 23(12):12287–12302

    Google Scholar 

  • Rasool K, Lee DS (2015) Influence of multi-walled carbon nanotubes on anaerobic biological sulfate reduction processes. J Nanoelectron Optoelectroni 10:485–489

    Article  CAS  Google Scholar 

  • Reddy PVL, Hernandez-Viezcasb JA, Peralta-Videaa JR, Gardea-Torresdeya JL (2016) Lessons learned: are engineered nanomaterials toxic to terrestrial plants? Sci Total Environ 568:470–479

    Article  CAS  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    Article  CAS  Google Scholar 

  • Roco MC (2003) Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 14:337–346

    Article  CAS  Google Scholar 

  • Rueckes T, Kim K, Joselevich E, Tseng GY, Cheung CL, Lieber CM (2000) Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289:94

    Article  CAS  Google Scholar 

  • Samaj J, Baluska F, Voigt B, Schlicht M, Volkmann D, Menzel D (2004) Endocytosis, actin cytoskeleton, and signaling. Plant Physiol 135:1150–1161

    Article  CAS  Google Scholar 

  • Sarlak N, Taherifar A, Salehi F (2014) Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. J Agri and Food Chem 62:4833–4838

    Article  CAS  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53

    Article  Google Scholar 

  • Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M, Tokeshi M, Mizukami H, Bianco A, Baba Y (2011) Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5:493–499

    Article  CAS  Google Scholar 

  • Serag MF, Braeckmans K, Habuchi S, Kaji N, Bianco A, Baba Y (2012a) Spatio temporal visualization of subcellular dynamics of carbon nanotubes. Nano Lett 12:6145–6151

    Article  CAS  Google Scholar 

  • Serag MF, Kaji N, Tokeshi M, Baba Y (2012b) Introducing carbon nanotubes into living walled plant cells through cellulase-induced nanoholes. RSC Adv 2:398–400

    Article  CAS  Google Scholar 

  • Serag MF, Kaji N, Tokeshi M, Bianco A, Baba Y (2012c) The plant cell uses carbon nanotubes to build tracheary elements. Integr Biol 4:127–131

    Article  CAS  Google Scholar 

  • Serag MF, Kaji N, Habuchi S, Bianco A, Baba Y (2013) Nanobiotechnology meets plant cell biology: carbon nanotubes as organelle targeting nanocarriers. RSC Adv 3:4856–4862

    Article  CAS  Google Scholar 

  • Sharon M, Choudhry A, Kumar R (2010) Nanotechnology in agricultural disease and food safety. J Phytology 2:83–92

    Google Scholar 

  • Shen CX, Zhang QF, Li J, Bi FC, Yao N (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97:1602–1609

    Article  CAS  Google Scholar 

  • Sheng Z, Song L, Zheng J, Hu D, He M, Zheng M, Gao G, Gong P, Zhang P, Ma Y et al (2013) Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photo acoustic imaging and photothermal therapy. Biomaterials 34:5236–5243

    Article  CAS  Google Scholar 

  • Shukla A, Dasgupta N, Ranjan S, Singh S, Chidambram R (2017) Nanotechnology towards prevention of anaemia and osteoporosis: from concept to market. Biotechnol Biotechnol Equip 31(5):863–879

    Google Scholar 

  • Siripireddy B, Mandal BK, Ranjan S, Dasgupta N, Ramalingam C (2017) Nano-zirconia – evaluation of its antioxidant and anticancer activity. J Photochem Photobiol B Biol 170:125–133

    Google Scholar 

  • Smimova EA, Gusev AA, Zaitseva ON, Lazareva EM, Onishchenko GE, Kuznetsova EV, Tkachev AG, Feofanov AV, Kirpichnikov MP (2011) Multiwalled Carbonnanotubes penetrate in to plant cells and affects the growth of Onbrychis arenaria seedlings. Acta Nat 3:99–106

    Google Scholar 

  • Smirnova E, Gusev A, Zaytseva O, Sheina O, Tkachev A, Kuznetsova E, Lazareva E, Onishchenko G, Feofanov A, Kirpichnikov M (2012) Uptake and accumulation of multiwalled carbon nanotubes change the morphometric and biochemical characteristics of Onobrychis arenaria seedlings. Front Chem Sci Eng 6:132–138

    Article  CAS  Google Scholar 

  • Srivastava V, Gusain D, Sharma YC (2015) Critical review on the toxicity of some widely used engineered nanoparticles. Ind Eng Chem Res 54:6209–6233

    Article  CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  Google Scholar 

  • Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212

    Article  CAS  Google Scholar 

  • Tammina SK, Mandal BK, Ranjan S, Dasgupta N (2017) Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. J Photochem Photobiol B Biol 166:158–168

    Google Scholar 

  • Tan XM, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487

    Article  CAS  Google Scholar 

  • Tolaymat T, El Badawy A, Sequeira R, Genaidy A (2015) A system-of-systems approach as abroad and integrated paradigm for sustainable engineered nanomaterials. Sci Total Environ 511:595–607

    Article  CAS  Google Scholar 

  • Torre-Roche RDL, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA, Wang Q, Ma X, Hamdi H, White JC (2013) Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47:12539–12547

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (2007) Nanotechnology (White Paper: Technical Report EPA 100/B-07/001). Science Policy Council, US EPA, Washington, DC

    Google Scholar 

  • Walia N, Dasgupta N, Ranjan S, Chen L, Ramalingam C (2017) Fish oil based vitamin D nanoencapsulation by ultrasonication and bioaccessibility analysis in simulated gastro-intestinal tract. Ultrason Sonochem 39:623–635

    Google Scholar 

  • Wang X, Han H, Liu X, Gu X, Chen K, Lu D (2012a) Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res 14:841

    Article  CAS  Google Scholar 

  • Wang X, Han H, Liu X, Gu X, Chen K, Lu D (2012b) Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J of Nanopart Res 14:841

    Article  CAS  Google Scholar 

  • Wang C, Liu H, Chen J, Tian Y, Shi J, Li D, Guo C, Ma Q (2014) Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean (Vicia faba L.) seedlings under combined stress of lead and cadmium. J Hazard Mater 15:404–412

    Article  CAS  Google Scholar 

  • Wang C, Zhang H, Ruan L, Chen L, Li H, Chang XL, Zhang X, Yang ST (2016) Bioaccumulation of13C-fullerenol nanomaterials in wheat. Environ Sci Nano 3:799–805

    Article  CAS  Google Scholar 

  • Westerhoff P, Song G, Hristovski K, Kiser MA (2011) Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. J Environ Monit 13:1195–1203

    Article  CAS  Google Scholar 

  • Wild E, Jones KC (2009) Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ Sci Technol 43:5290–5294

    Article  CAS  Google Scholar 

  • Yadav BC, Kumar R (2008) Structure, properties and applications of fullerenes. Int J Nanotechnol Appl 2:15–24

    Google Scholar 

  • Yan S, Zhao L, Li H, Zhang Q, Tan J, Huang M, He S, Li L (2013) Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. JHazard Mater 246–247:110–118

    Article  CAS  Google Scholar 

  • Yan S, Zhang H, Huang Y, Tan J, Wang P, Wang Y, Hou H, Huang J, Li L (2016) Single-wall and multi-wall carbon nanotubes promote rice root growth by eliciting the similar molecular pathways and epigenetic regulation. IET Nanobiotechnol 10:222–229

    Article  Google Scholar 

  • Yao Z, Postma HWC, Balents L, Dekker C (1999) Carbon nanotube intra molecular junctions. Nature 402:273

    Article  CAS  Google Scholar 

  • Zhai G, Gutowski SM, Walters KS, Yan B, Schnoor JL (2015) Charge, size, and cellular selectivity for multiwall carbon nanotubes by maize and soybean. Environ Sci Technol 49:7380–7390

    Article  CAS  Google Scholar 

  • Zhang W, Guo ZY, Huang DQ, Liu ZM, Guo X, Zhong HQ (2011a) Synergistic effect of chemo photothermal therapy using PEGylated graphene oxide. Biomaterials 32:8555–8561

    Article  CAS  Google Scholar 

  • Zhang Y, Yang Z, Yang Y, Wang S, Shi L, Xie W, Sun K, Zou K, Wang L, Xiong J et al (2011b) Production of transgenic mice by random recombination of targeted genes in female germ line stem cells. J Mol Cell Biol 3:132–141

    Article  CAS  Google Scholar 

  • Zhang M, Gao B, Chen J, Li Y, Creamer AE, Chen H (2014) Slow-release fertilizer encapsulated by graphene oxide films. Chem Eng J 255:107–113

    Article  CAS  Google Scholar 

  • Zhang P, Zhang R, Fang X, Song T, Cai X, Liu H, Du S (2016) Toxic effects of graphene on the growth and nutritional levels of wheat (Triticum aestivum L.): short- and long term exposure studies. J Hazard Mater 317:543–551

    Article  CAS  Google Scholar 

  • Zhao S, Wang Q, Zhao Y, Rui Q, Wang D (2015) Toxicity and translocation of graphene oxide in Arabidopsis thaliana. Environ Toxicol Pharmacol 39:145–156

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash M. Gopalakrishnan Nair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gopalakrishnan Nair, P.M. (2018). Toxicological Impact of Carbon Nanomaterials on Plants. In: Gothandam, K., Ranjan, S., Dasgupta, N., Ramalingam, C., Lichtfouse, E. (eds) Nanotechnology, Food Security and Water Treatment. Environmental Chemistry for a Sustainable World. Springer, Cham. https://doi.org/10.1007/978-3-319-70166-0_5

Download citation

Publish with us

Policies and ethics