Skip to main content

Plant Nano-nutrition: Perspectives and Challenges

  • Chapter
  • First Online:
Nanotechnology, Food Security and Water Treatment

Abstract

The global agriculture is facing many challenges including sustainable use and conservation of natural resources, climate change, urbanization, and pollution resulting from agrochemicals (e.g., fertilizers and pesticides). So, the sustainable agriculture is an urgent issue and hence the suitable agro-technological interventions are essential (e.g., nano- and bio-technology) for ensuring the safety and sustainability of relevant production system. Biotechnology and nanotechnology also can be considered emerging solutions to resolve the global food crisis. Nanoparticles or nanomaterials can be used in delivering different nutrients for plant growth. These nanoparticles as nanofertilizers have positive and negative effects on soils, soil-biota and plants. These effects mainly depend on multiple factors including nanofertilizer properties, plant species, soil fate and dynamics as well as soil microbial communities. Nanofertilizers could improve the nutrient use efficiencies through releasing of nutrients slowly and steadily for more than 30 days as well as reducing the loss of nutrients in agroecosystems and sustaining farm productivity. Here we review the plant nano-nutrition including the response of plants and soils to nanonutrients and their fate, dynamic, bioavailability, phytotoxicity, etc. Concerning the effects of nanonutrients on terrestrial environments are still an ongoing processes and it demands further researches as well as a knowledge gap towards different changes in shape, texture, color, taste and nutritional aspects on nanonutrients exposed plants as a major component in the food chain. Moreover, the interaction between nanonutrients and plants, soils, soil biota and the entire agroecosystem will be also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Tripathi V, Adil Edrisi S, Kant Dubey R, Bakshi M, Dubey PK, Singh HB, Ebbs SD (2016) Sustainability of crop production from polluted lands. Energ Ecol Environ 1(1):54–65. https://doi.org/10.1007/s40974-016-0007-x

    Article  Google Scholar 

  • Adams MD, Kanaroglou PS (2016) Mapping real-time air pollution health risk for environmental management: combining mobile and stationary air pollution monitoring with neural network models. J Environ Manag 168:133–141. https://doi.org/10.1016/j.jenvman.2015.12.012

    Article  CAS  Google Scholar 

  • Adhikari T, Sarkar D, Mashayekhi H, Xing BS (2016) Growth and enzymatic activity of maize (Zea mays L.) plant: solution culture test for copper dioxide nano particles. J Plant Nutr 39(1):99–115

    Article  CAS  Google Scholar 

  • Ahmed W, Jackson MJ (2016) Surgical tools and medical devices. Springer, Cham. https://doi.org/10.1007/978-3-319-33489-9

    Book  Google Scholar 

  • Ahmed S, Ahmad M, Swami BL, Ikram S (2016a) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7(1):17–28

    Article  CAS  Google Scholar 

  • Ahmed S, Ikram AS, Yudha SS (2016b) Biosynthesis of gold nanoparticles: a green approach. J Photochem Photobiol B Biol 161:141–153

    Article  CAS  Google Scholar 

  • Alidoust D, Isoda A (2013) Effect of γFe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max L. Merr.): foliar spray versus soil amendment. Acta Physiol Plant 35:3365–3375. https://doi.org/10.1007/s11738-013-1369-8

    Article  CAS  Google Scholar 

  • Aliofkhazraei M (2016) Handbook of nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-15338-4

    Book  Google Scholar 

  • Aliofkhazraei M, Makhlouf ASH (2016) Handbook of nanoelectrochemistry: electrochemical synthesis methods, properties, and characterization techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-15266-0

    Book  Google Scholar 

  • Ambika S, Sundrarajan M (2016) [EMIM] BF4 ionic liquid-mediated synthesis of TiO2 nanoparticles using Vitex negundo Linn extract and its antibacterial activity. J Mol Liq. https://doi.org/10.1016/j.molliq.2016.06.079

  • Amenta V, Aschberger K, Arena M, Bouwmeester H, Moniz FB, Brandhoff P et al (2015) Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regul Toxicol Pharmacol 73:463–476. https://doi.org/10.1016/j.yrtph.2015.06.016

    Article  Google Scholar 

  • Andreotti F, Mucha AP, Caetano C, Rodrigues P, Gomes CR, Almeida CMR (2015) Interactions between salt marsh plants and Cu nanoparticles: effects on metal uptake and phytoremediation processes. Ecotoxicol Environ Saf 120:303–309

    Article  CAS  Google Scholar 

  • Andrievski RA, Khatchoyan AV (2016) Nanomaterials in extreme environments: fundamentals and applications, Springer series in materials science series no. 230. Springer, Cham. https://doi.org/10.1007/978-3-319-25331-2

    Book  Google Scholar 

  • Anjum NA, Adam V, Kizek R, Duarte AC, Pereira E, Iqbal M, Lukatkin AS, Ahmad I (2015) Nanoscale copper in the soil–plant system – toxicity and underlying potential mechanisms. Environ Res 138:306–325

    Article  CAS  Google Scholar 

  • Aouada FA, de Moura MR (2015) Nanotechnology applied in agriculture: controlled release of agrochemicals. In: Rai M et al (eds) Nanotechnologies in food and agriculture. Springer, Cham, pp 103–118. https://doi.org/10.1007/978-3-319-14024-7_5

    Google Scholar 

  • Araújo R, Castro ACM, Fiúza A (2015) The use of nanoparticles in soil and water remediation processes. Mater Today Proc 2(1):315–320

    Article  Google Scholar 

  • Bandyopadhyay S, Plascencia-Villa G, Mukherjee A, Rico CM, José-Yacamán M, Peralta-Videa JR, Gardea-Torresdey JL (2015) Comparative phytotoxicity of ZnO NPs bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci Total Environ 515:60–69

    Article  CAS  Google Scholar 

  • Barker AV, Pilbeam DJ (2015) Handbook of plant nutrition, Books in soils, plants, and the environment series, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Barrios AC, Medina-Velo IA, Zuverza-Mena N, Dominguez OE, Peralta-Videa JR, Gardea-Torresdey JL (2016) Nutritional quality assessment of tomato fruits after exposure to uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate and citric acid. Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2016.04.017

  • Belal E, El-Ramady H (2016) Nanoparticles in water, soils and agriculture. In: Ranjan S et al (eds) Nanoscience in food and agriculture 2, Sustainable agriculture reviews 21. Springer, Cham. https://doi.org/10.1007/978-3-319-39306-3_10

    Google Scholar 

  • Bennur T, Khan Z, Kshirsagar R, Javdekar V, Zinjarde S (2016) Biogenic gold nanoparticles from the Actinomycete Gordonia amarae: application in rapid sensing of copper ions. Sensors Actuators B Chem 233:684–690

    Article  CAS  Google Scholar 

  • Benoit R, Wilkinson KJ, Sauve S (2013) Partitioning of silver and chemical speciation of free Ag in soils amended with nanoparticles. Chem Cent J 7:75

    Article  CAS  Google Scholar 

  • Bhatt I, Tripathi BN (2011) Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82(3):308–317

    Article  CAS  Google Scholar 

  • Bhushan B (2016) Encyclopedia of nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0

    Book  Google Scholar 

  • Bindal A, Hamedi-Hagh S (2016) Silicon nanowire transistors. Springer, Cham. https://doi.org/10.1007/978-3-319-27177-4

    Book  Google Scholar 

  • Bouguerra S, Gavina A, Ksibi M, da Graça Rasteiro M, Rocha-Santos T, Pereira R (2016) Ecotoxicity of titanium silicon oxide (TiSiO4) nanomaterial for terrestrial plants and soil invertebrate species. Ecotoxicol Environ Saf 129:291–301

    Article  CAS  Google Scholar 

  • Bour A, Mouchet F, Silvestre J, Gauthier L, Pinelli E (2015) Environmentally relevant approaches to assess nanoparticles ecotoxicity: a review. J Hazard Mater 283:764–777

    Article  CAS  Google Scholar 

  • Brown I (2017) Climate change and soil wetness limitations for agriculture: spatial risk assessment framework with application to Scotland. Geoderma 285:173–184

    Article  Google Scholar 

  • Caballero-Guzman A, Nowack B (2016) A critical review of engineered nanomaterial release data: are current data useful for material flow modeling? Environ Pollut 213:502–517

    Article  CAS  Google Scholar 

  • Castiglione MR, Giorgetti L, Bellani L, Muccifora S, Bottega S, Spanò C (2016) Root responses to different types of TiO2 nanoparticles and bulk counterpart in plant model system Vicia faba L. Environ Exp Bot 130:11–21

    Article  CAS  Google Scholar 

  • Chaithawiwat K, Vangnai A, McEvoy JM, Pruess B, Krajangpan S, Khan E (2016) Role of oxidative stress in inactivation of Escherichia coli BW25113 by nanoscale zero-valent iron. Sci Total Environ 565:857–862

    Article  CAS  Google Scholar 

  • Chalise S, Naranpanawa A (2016) Climate change adaptation in agriculture: a computable general equilibrium analysis of land-use change in Nepal. Land Use Policy 59:241–250

    Article  Google Scholar 

  • Chaudhary DR, Gautam RK, Yousuf B, Mishra A, Jha B (2015) Nutrients, microbial community structure and functional gene abundance of rhizosphere and bulk soils of halophytes. Appl Soil Ecol 91:16–26

    Article  Google Scholar 

  • Chen S, Chen X, Xu J (2016a) Impacts of climate change on agriculture: evidence from China. J Environ Econ Manag 76:105–124

    Article  Google Scholar 

  • Chen S, Han Y, Fu C, Zhang H, Zhu Y, Zuo Z (2016b) Micro and nano-size pores of clay minerals in shale reservoirs: implication for the accumulation of shale gas. Sediment Geol 342:180–190

    Article  Google Scholar 

  • Chhipa H, Joshi P (2016) Nanofertilisers, nanopesticides and nanosensors in agriculture. In: Ranjan S et al (eds) Nanoscience in food and agriculture 1, Sustainable agriculture reviews 20. Springer, Cham, pp 247–282. https://doi.org/10.1007/978-3-319-39303-2_9

    Chapter  Google Scholar 

  • Conway JR, Keller A (2016) Gravity-driven transport of three engineered nanomaterials in unsaturated soils and their effects on soil pH and nutrient release. Water Res 98:250–260

    Article  CAS  Google Scholar 

  • Cornelis G, Pang L, Doolette C, Kirby JK, McLaughlin MJ (2013) Transport of silver nanoparticles in saturated columns of natural soils. Sci Total Environ 463–464:120–130

    Article  CAS  Google Scholar 

  • Costa PM, Fadeel B (2016) Emerging systems biology approaches in nanotoxicology: towards a mechanism-based understanding of nanomaterial hazard and risk. Toxicol Appl Pharmacol 299:101–111

    Article  CAS  Google Scholar 

  • Cox A, Venkatachalam P, Sahi S, Sharma N (2016) Silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant Physiol Biochem 107:147–163

    Article  CAS  Google Scholar 

  • Da Costa MVJ, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54(1):110–119. https://doi.org/10.1007/s11099-015-0167-5

    Article  CAS  Google Scholar 

  • Dai W, Kheireddin B, Gao H, Liang H (2016) Roles of nanoparticles in oil lubrication. Tribol Int 102:88–98

    Article  CAS  Google Scholar 

  • Danish M, Gu X, Lu S, Naqvi M (2016) Degradation of chlorinated organic solvents in aqueous percarbonate system using zeolite supported nanozero valent iron (Z-nZVI) composite. Environ Sci Pollut Res Int 23(13):13298–13307. https://doi.org/10.1007/s11356-016-6488-5.

    Article  CAS  Google Scholar 

  • Dasgupta N, Ranjan S, Mundra S, Ramalingam C, Kumar A (2015a) Fabrication of food grade vitamin E nanoemulsion by low energy approach, characterization and its application. Int J Food Prop 19(3):700–708

    Article  CAS  Google Scholar 

  • Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A (2015b) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400. https://doi.org/10.1016/j.foodres.2015.01.005

    Article  Google Scholar 

  • Dasgupta N, Ranjan S, Ramalingam C (2017) Applications of nanotechnology in agriculture and water quality management. Environ Chem Lett 15(4):591–605

    Google Scholar 

  • de la Rosa G, García-Castaneda C, Vazquez-Núnez E, Alonso-Castro AJ, Basurto-Islas G, Mendoza A, Cruz-Jimenez G, Molina C (2016) Physiological and biochemical response of plants to engineered NMs: implications on future design. Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2016.06.014

  • De Oliveira JL, Campos EVR, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32:1550–1561. https://doi.org/10.1016/j.biotechadv.2014.10.010

    Article  CAS  Google Scholar 

  • Dietzel A (2016) Microsystems for pharmatechnology: manipulation of fluids, particles, droplets, and cells. Springer, Cham. https://doi.org/10.1007/978-3-319-26920-7

    Book  Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2015) Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology 24:119–129. https://doi.org/10.1007/s10646-014-1364-x

    Article  CAS  Google Scholar 

  • Ditta A, Arshad M, Ibrahim M (2015) Nanoparticles in sustainable agricultural crop production: applications and perspectives. In: Siddiqui MH et al (eds) Nanotechnology and plant sciences. Springer, Cham, pp 55–75. https://doi.org/10.1007/978-3-319-14502-0_4

    Google Scholar 

  • Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, Fari M (2012) Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regul 68:525–531

    Article  CAS  Google Scholar 

  • Domokos-Szabolcsy E, Alladalla NA, Alshaal T, Sztrik A, Márton L, El-Ramady H (2014) In vitro comparative study of two Arundo donax L. ecotypes’ selenium tolerance. Int J Hortic Sci 20(3–4):119–122. ISSN 1585-0404

    Google Scholar 

  • Donaldson L (2016) Halloysite clay nanotubes hold promise. Mater Today 19(1):5–6

    Google Scholar 

  • Dong H, Xie Y, Zeng G, Tang L, Liang J, He Q, Zhao F, Zeng Y, Wu Y (2016) The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron. Chemosphere 144:1682–1689

    Article  CAS  Google Scholar 

  • Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, Guo H (2016) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2016.04.024

  • Dubey A, Mailapalli DR (2016) Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. In: Lichtfouse E (ed) Sustainable agriculture reviews, Sustainable agriculture reviews 19. Springer, Cham, pp 307–330. https://doi.org/10.1007/978-3-319-26777-7_7

    Chapter  Google Scholar 

  • Durán N, Nakazato G, Seabra AB (2016) Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-016-7657-7

  • Duran-Encalada JA, Paucar-Caceres A, Bandala ER, Wright GH (2017) The impact of global climate change on water quantity and quality: a system dynamics approach to the US–Mexican transborder region. Eur J Oper Res 256(2):567–581

    Article  Google Scholar 

  • Durenkamp M, Pawlett M, Ritz K, Harris JA, Neal AL, McGrath SP (2016) Nanoparticles within WWTP sludges have minimal impact on leachate quality and soil microbial community structure and function. Environ Pollut 211:399–405

    Article  CAS  Google Scholar 

  • Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat J (2016) Understanding the role of nanomaterials in agriculture. In: Singh DP et al (eds) Microbial inoculants in sustainable agricultural productivity. Springer, Delhi, pp 271–288. https://doi.org/10.1007/978-81-322-2644-4_17

    Chapter  Google Scholar 

  • Egorova EM, Kubatiev AA, Schvets VI (2016) Biological effects of metal nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-30906-4

    Book  Google Scholar 

  • El-Ramady HR, Abdalla NA, Alshaal TA, Elhawat N, Domokos-Szabolcsy É, Prokisch J, Sztrik A, Fári M (2014a). Nano-selenium: from in vitro to micro farm experiments. The international conference “Biogeochemical Processes at Air-Soil-Water Interfaces and Environmental Protection” for the European society for soil conservation, Imola–Ravenna, Italy 23–26 June 2014. Doi:10.13140/2.1.2260.4481

    Google Scholar 

  • El-Ramady HR, Alshaal TA, Amer M, Domokos-Szabolcsy É, Elhawat N, Prokisch J, Fári M (2014b) Soil quality and plant nutrition. In: Ozier-Lafontaine H, Lesueur-Jannoyer M (eds) Sustainable agriculture reviews 14: agroecology and global change, Sustainable agriculture reviews 14. Springer, Cham, pp 345–447. https://doi.org/10.1007/978-3-319-06016-3_11

    Google Scholar 

  • El-Ramady HR, Alshaal TA, Shehata SA, Domokos-Szabolcsy É, Elhawat N, Prokisch J, Fári M, Marton L (2014c) Plant nutrition: from liquid medium to micro-farm. In: Ozier-Lafontaine H, Lesueur-Jannoyer M (eds) Sustainable agriculture reviews 14 (agroecology and global change), Sustainable agriculture reviews 14. Springer, Cham, pp 449–508. https://doi.org/10.1007/978-3-319-06016-3_12

    Google Scholar 

  • El-Ramady H, Abdalla N, Alshaal T, El-Henawy A, Faizy SE-DA, Shams MS, Shalaby T, Bayoumi Y, Elhawat N, Shehata S, Sztrik A, Prokisch J, Fári M, Pilon-Smits EA, Domokos-Szabolcsy É (2015a) Selenium and its role in higher plants. In: Lichtfouse E, Schwarzbauer J, Robert D (eds) Environmental chemistry for a sustainable world, Pollutants in buildings, water and living organisms, vol 7. Springer, Cham, pp 235–296. https://doi.org/10.1007/978-3-319-19276-5_6

    Google Scholar 

  • El-Ramady H, Domokos-Szabolcsy É, Shalaby TA, Prokisch J, Fári M (2015b) Selenium in agriculture: water, air, soil, plants, food, animals and nanoselenium. In: Lichtfouse E (ed) Environmental chemistry for a sustainable world, CO2 sequestration, biofuels and depollution, vol 5, pp 153–232. https://doi.org/10.1007/978-3-319-11906-9_5. Springer Berlin.

    Google Scholar 

  • El-Ramady H, Abdalla N, Taha HS, Alshaal T, El-Henawy A, Faizy SE-DA, Shams MS, Youssef SM, Shalaby T, Bayoumi Y, Elhawat N, Shehata S, Sztrik A, Prokisch J, Fári M, Domokos-Szabolcsy É, Pilon-Smits EA, Selmar D, Haneklaus S, Schnug E (2016a) Selenium and nano-selenium in plant nutrition. Environ Chem Lett 14(1):123–147. https://doi.org/10.1007/s10311-015-0535-1

    Article  CAS  Google Scholar 

  • El-Ramady H, Alshaal T, Abdalla N, Prokisch J, Sztrik A, Fári M, Domokos-Szabolcsy É (2016b). Selenium and nano-selenium biofortified sprouts using micro-farm systems. In: Bañuelos, GS, Lin, Z-Q, Guilherme, LRG, dos Reis, AR (eds) Proceedings of the 4th International Conference on Selenium in the Environment and human health, Sao Paulo, Brazil, 18–21 October 2015, CRC, Taylor & Francis Group, London, UK, pp 189–190, Doi:10.13140/RG.2.1.1065.9925

    Google Scholar 

  • Fadel TR, Steevens JA, Thomas TA, Linkov I (2015) The challenges of nanotechnology risk management. Nano Today 10:6–10. https://doi.org/10.1016/j.nantod.2014.09.008

    Article  CAS  Google Scholar 

  • Fajardo C, Gil-Díaz M, Costa G, Alonso J, Guerrero AM, Nande M, Lobo MC, Martín M (2015) Residual impact of aged nZVI on heavy metal-polluted soils. Sci Total Environ 535:79–84. https://doi.org/10.1016/j.scitotenv.2015.03.067

    Article  CAS  Google Scholar 

  • Flores-López ML, Cerqueira MA, de Rodríguez DJ, Vicente AA (2016) Perspectives on utilization of edible coatings and nano-laminate coatings for extension of postharvest storage of fruits and vegetables. Food Eng Rev 8:292–305. https://doi.org/10.1007/s12393-015-9135-x

    Article  CAS  Google Scholar 

  • Floris B, Galloni P, Sabuzi F, Conte V (2016) Metal systems as tools for soil remediation. Inorg Chim Acta. https://doi.org/10.1016/j.ica.2016.04.003

  • Ford H, Roberts A, Jones L (2016) Nitrogen and phosphorus co-limitation and grazing moderate nitrogen impacts on plant growth and nutrient cycling in sand dune grassland. Sci Total Environ 542(Part A):203–209

    Article  CAS  Google Scholar 

  • Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20. https://doi.org/10.3389/fenvs.2016.00020

    Article  Google Scholar 

  • Gardea-Torresdey JL, Rico CM, White JC (2014) Trophic transfer, transformation and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48:2526–2540

    Article  CAS  Google Scholar 

  • Garvie-Cook H (2016) Novel (Trans)dermal drug delivery strategies: micro- and nano-scale assessments. Springer, Cham. https://doi.org/10.1007/978-3-319-28901-4

    Book  Google Scholar 

  • Gemtos T, Fountas S, Tagarakis A, Liakos V (2013) Precision agriculture application in fruit crops: experience in handpicked fruits. Proced Technol 8:324–332

    Article  Google Scholar 

  • Gil-Díaz M, Diez-Pascual S, Gonzalez A, Alonso J, Rodríguez-Valdes E, Gallego JR, Lobo MC (2016a) A nanoremediation strategy for the recovery of an As-polluted soil. Chemosphere 149:137–145. https://doi.org/10.1016/j.chemosphere.2016.01.106

    Article  CAS  Google Scholar 

  • Gil-Díaz M, Gonzalez A, Alonso J, Lobo MC (2016b) Evaluation of the stability of a nanoremediation strategy using barley plants. J Environ Manag 165:150–158. https://doi.org/10.1016/j.jenvman.2015.09.032

    Article  CAS  Google Scholar 

  • Gillies G, Mackenzie K, Kopinke F-D, Georgi A (2016) Fluorescence labelling as tool for zeolite particle tracking in nanoremediation approaches. Sci Total Environ 550:820–826. https://doi.org/10.1016/j.scitotenv.2016.01.009

    Article  CAS  Google Scholar 

  • Gogos A, Moll J, Klingenfuss F, van der Heijden M, Irin F, Green MJ, Zenobi R, Bucheli TD (2016) Vertical transport and plant uptake of nanoparticles in a soil mesocosm experiment. J Nanobiotechnol 14:40. https://doi.org/10.1186/s12951-016-0191-z

    Article  CAS  Google Scholar 

  • Gomez-Garay A, Pintos B, Manzanera JA, Lobo C, Villalobos N, Martín L (2014) Uptake of CeO2 nanoparticles and its effect on growth of Medicago arborea In Vitro plantlets. Biol Trace Elem Res 161:143–150. https://doi.org/10.1007/s12011-014-0089-2

    Article  CAS  Google Scholar 

  • Haghighi M, Abolghasemi R, Teixeira da Silva JA (2014) Low and high temperature stress affect the growth characteristics of tomato in hydroponic culture with Se and nano-Se amendment. Sci Hortic 178:231–240. https://doi.org/10.1016/j.scienta.2014.09.006

    Article  CAS  Google Scholar 

  • Handford CE, Dean M, Spence M, Henchion M, Elliott CT, Campbell K (2015) Awareness and attitudes towards the emerging use of nanotechnology in the agri-food sector. Food Control 57:24–34

    Article  Google Scholar 

  • He X, Hwang H-M (2016) Nanotechnology in food science: functionality, applicability, and safety assessment. J Food Drug Anal 24(4):671–681

    Article  CAS  Google Scholar 

  • He S, Feng Y, Ni J, Sun Y, Xue L, Feng Y, Yu Y, Lin X, Yang L (2016) Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles. Chemosphere 147:195–202

    Article  CAS  Google Scholar 

  • Henderson J, Storeygard A, Deichmann U (2017) Has climate change driven urbanization in Africa? J Dev Econ 124:60–82

    Article  Google Scholar 

  • Hernandez-Viezcas JA, Castillo-Michel H, Andrews JC, Cotte M, Rico CM, Peralta-Videa JR, Priester JH, Holden PA, Gardea-Torresdey JL (2013) In situ synchrotron fluorescence mapping and coordination of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano 7:1415–1423

    Article  CAS  Google Scholar 

  • Hobbie SE (2015) Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol Evol 30(6):357–363

    Article  Google Scholar 

  • Homaee MB, Ehsanpour AA (2015) Physiological and biochemical responses of potato (Solanum tuberosum) to silver nanoparticles and silver nitrate treatments under in vitro conditions. Ind J Plant Physiol. (October–December 2015) 20(4):353–359. Doi:https://doi.org/10.1007/s40502-015-0188-x

  • Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR, Gardea-Torresdey JL (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Proc Impacts 17(1):177–185

    Article  CAS  Google Scholar 

  • Hu X, Li D, Gao Y, Mu L, Zhou Q (2016) Knowledge gaps between nanotoxicological research and nanomaterial safety. Environ Int 94:8–23

    Article  CAS  Google Scholar 

  • Ibrahim RK, Hayyan M, AlSaadi MA, Hayyan A, Ibrahim S (2016) Environmental application of nanotechnology: air, soil, and water. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-016-6457-z

  • Jacobsen BH, Hansen AL (2016) Economic gains from targeted measures related to non point pollution in agriculture based on detailed nitrate reduction maps. Sci Total Environ 556:264–275

    Article  CAS  Google Scholar 

  • Jain R, Jordan N, Schild D, van Hullebusch ED, Weiss S, Franzen C, Farges F, Hübner R, Lens PNL (2015) Adsorption of zinc by biogenic elemental selenium nanoparticles. Chem Eng J 260:855–863. https://doi.org/10.1016/j.cej.2014.09.057

    Article  CAS  Google Scholar 

  • Jain A, Ranjan S, Dasgupta N, Ramalingam C (2016a) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr 15:1–21

    Google Scholar 

  • Jain R, Dominic D, Jordan N, Rene ER, Weiss S, van Hullebusch ED, Hubner R, Lens PNL (2016b) Higher Cd adsorption on biogenic elemental selenium nanoparticles. Environ Chem Lett. https://doi.org/10.1007/s10311-016-0560-8

  • Janardan S, Suman P, Ragul G, Anjaneyulu U, Shivendu R, Dasgupta N, Ramalingam C, Swamiappan S, Vijayakrishna K, Sivaramakrishna A (2016) Assessment on the antibacterial activity of nanosized silica derived from hypercoordinated silicon(iv) precursors. RSC Adv 6(71):66394–66406

    Article  CAS  Google Scholar 

  • Jang MH, Lim M, Hwang YS (2014) Potential environmental implications of nanoscale zero-valent iron particles for environmental remediation. Environ Health Toxicol 29:e2014022

    Article  Google Scholar 

  • Jones DE, Ghandehari H, Facelli JC (2016) A review of the applications of data mining and machine learning for the prediction of biomedical properties ofnanoparticles. Comput Methods Prog Biomed 132:93–103

    Article  Google Scholar 

  • Joo SH, Zhao D (2016) Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: a review. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2016.02.068

  • Jorio A (2016) Bioengineering applications of carbon nanostructures, Nanomedicine and nanotoxicology series. Springer, Cham. https://doi.org/10.1007/978-3-319-25907-9

    Book  Google Scholar 

  • Judy JD, Bertsch PM (2014) Bioavailability, toxicity and fate of manufactured nanomaterials in terrestrial ecosystems. In: Sparks (ed) Advances in agronomy, vol 123. Elsevier Inc. https://doi.org/10.1016/B978-0-12-420225-2.00001-7, San Diego, pp 1–64

    Google Scholar 

  • Kah M (2015) Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front Chem 3:64. https://doi.org/10.3389/fchem.2015.00064.eCollection2015.

  • Karimzadeh I, Aghazadeh M, Ganjali MR, Norouzi P, Shirvani-Arani S, Doroudi T, Kolivand PH, Marashi SA, Gharailou D (2016) A novel method for preparation of bare and poly(vinylpyrrolidone) coated superparamagnetic iron oxide nanoparticles for biomedical applications. Mater Lett 179:5–8

    Article  CAS  Google Scholar 

  • Keller A, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1–17

    Article  Google Scholar 

  • Keller AA, Vosti W, Wang H, Lazareva A (2014) Release of engineered nanomaterials from personal care products throughout their life cycle. J Nanopart Res 16:2489. https://doi.org/10.1007/s11051-014-2489-9

    Article  CAS  Google Scholar 

  • Khan I, Oh D-H (2016) Integration of nisin into nanoparticles for application in foods. Innovative Food Sci Emerg Technol 34:376–384

    Article  CAS  Google Scholar 

  • Khan MN, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH (2016) Role of nanomaterials in plants under challenging environments. Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2016.05.038

  • Khanna VK (2016) Implantable medical electronics: prosthetics, drug delivery, and health monitoring. Springer, Cham. https://doi.org/10.1007/978-3-319-25448-7

    Book  Google Scholar 

  • Kolenc Z, Vodnik D, Mandelc S, Javornik B, Kastelec D, Čerenak A (2016) Hop (Humulus lupulus L.) response mechanisms in drought stress: proteomic analysis with physiology. Plant Physiol Biochem 105:67–78

    Article  CAS  Google Scholar 

  • Kumari R, Singh JS, Singh DP (2016) Biogenic synthesis and spatial distribution of silver nanoparticles in the legume mungbean plant (Vigna radiata L). Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2016.06.001

  • Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K, Naidu R (2016a) In-Situ remediation approaches for the management of contaminated sites: a comprehensive overview. In: de Voogt P (ed) Reviews of environmental contamination and toxicology, vol 1. Reviews of environmental contamination and toxicology, vol 236. Springer, Switzerland, pp 1–115. Doi:10.1007/978-3-319-20013-2_1

    Google Scholar 

  • Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016b) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications: an updated report. Saudi Pharm J 24(4):473–484

    Article  Google Scholar 

  • Lalau CM, De Almeida Mohedano R, Schmidt EC et al (2015) Toxicological effects of copper oxide nanoparticles on the growth rate photosynthetic pigment content, and cell morphology of the duckweed Landoltia punctata. Protoplasma 252:221–229

    Article  CAS  Google Scholar 

  • Lateef A, Nazir R, Jamil N, Alam S, Shah R, Khan MN, Saleem M (2016) Synthesis and characterization of zeolite based nano–composite: an environment friendly slow release fertilizer. Microporous Mesoporous Mater 232:174–183

    Article  CAS  Google Scholar 

  • Le Croy GE, Yang S-T, Yang F, Liu Y, Fernando KAS, Bunker CE, Hu Y, Luo PG, Sun Y-P (2016) Functionalized carbon nanoparticles: syntheses and applications in optical bioimaging and energy conversion. Coord Chem Rev 320–321:66–81

    Article  CAS  Google Scholar 

  • Le Van N, Ma C, Shang J, Rui Y, Liu S, Xing B (2016) Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144:661–670

    Article  CAS  Google Scholar 

  • Lefevre E, Bossa N, Wiesner MR, Gunsch CK (2016) A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): behavior, transport and impacts on microbial communities. Sci Total Environ 565:889–901

    Article  CAS  Google Scholar 

  • Li Q, Chen X, Zhuang J, Chen X (2016a) Decontaminating soil organic pollutants with manufactured nanoparticles. Environ Sci Pollut Res 23:11533–11548. https://doi.org/10.1007/s11356-016-6255-7

    Article  CAS  Google Scholar 

  • Li Z, Lin Z, Wang N, Wang J, Liu W, Sun K, Qing Fu Y, Wang Z (2016b) High precision NH3 sensing using network nano-sheet Co3O4 arrays based sensor at room temperature. Sensors Actuators B Chem 235:222–231

    Article  CAS  Google Scholar 

  • Li H, Ye X, Guo X, Geng Z, Wang G (2016c) Effects of surface ligands on the uptake and transport of gold nanoparticles in rice and tomato. J Hazard Mater 314:188–196

    Article  CAS  Google Scholar 

  • Li H, Li H, Liu J, Luo Z, Joyce D, He S (2017) Nano-silver treatments reduced bacterial colonization and biofilm formation at the stem-ends of cut gladiolus Eerde spikes. Postharvest Biol Technol 123:102–111

    Article  CAS  Google Scholar 

  • Libralato G, Costa Devoti A, Zanella M, Sabbioni E, Mičetić I, Manodori L, Pigozzo A, Manenti S, Groppi F, Volpi Ghirardini A (2016) Phytotoxicity of ionic, micro- and nano-sized iron in three plant species. Ecotoxicol Environ Saf 123:81–88

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139. https://doi.org/10.1016/j.scitotenv.2015.01.104

    Article  CAS  Google Scholar 

  • Liu R, Zhang H, Lal R (2016) Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on Lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut 227:42. https://doi.org/10.1007/s11270-015-2738-2

    Article  CAS  Google Scholar 

  • Loeppmann S, Blagodatskaya E, Pausch J, Kuzyakov Y (2016) Substrate quality affects kinetics and catalytic efficiency of exo-enzymes in rhizosphere and detritusphere. Soil Biol Biochem 92:111–118

    Article  CAS  Google Scholar 

  • Lopez-Moreno ML, de la Rosa G, Hernandez-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 14:7315–7320

    Article  CAS  Google Scholar 

  • López-Moreno ML, Avilés LL, Pérez NG, Irizarry BÁ, Perales O, Cedeno-Mattei Y, Román F (2016) Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants). Sci Total Environ 550:45–52

    Article  CAS  Google Scholar 

  • Luo Z, Xu Y, Ye Q (2016). Effect of nano-SiO2-LDPE packaging on biochemical, sensory, and microbiological quality of Pacific white shrimp Penaeus vannamei during chilled storage. Fish Sci 81:983–993 Doi:https://doi.org/10.1007/s12562-015-0914-3

  • Ma H, William PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles: a review. Environ Pollut 172:76–85

    Article  CAS  Google Scholar 

  • Ma CX, White JC, Dhankher OP, Xing B (2015) Metal-based nanotoxicity and detoxification pathways in higher plants. Environ Sci Technol 49(12):7109–7122

    Article  CAS  Google Scholar 

  • Ma J, Hung H, Macdonald RW (2016) The influence of global climate change on the environmental fate of persistent organic pollutants: a review with emphasis on the Northern Hemisphere and the Arctic as a receptor. Glob Planet Chang 146:89–108

    Article  Google Scholar 

  • Maddinedi SB, Mandal BK, Ranjan S, Dasgupta N (2015) Diastase assisted green synthesis of size-controllable gold nanoparticles. RSC Adv 5(34):26727–26733

    Google Scholar 

  • Maddinedi SB, Mandal BK, Patil SH, Andhalkar VV, Ranjan S, Dasgupta N (2017) Diastase induced green synthesis of bilayered reduced graphene oxide and its decoration with gold nanoparticles. J Photochem Photobiol B Biol 166:252–258

    Google Scholar 

  • Magalhães WLE, Zanoni PRS, Helm CV, Lazzarotto M, Satyanarayana KG (2017) Nanotechnology applied to improve functionality in food. In: Grumezescu AM (ed) Nutrient delivery: a volume in nanotechnology in the agri-food industry. Academic Press, Amsterdam, pp 177–219

    Chapter  Google Scholar 

  • Maheshwari B, Bristow KL (2016) Peri-urban water, agriculture and urbanization. Agric Water Manag 176:263–265

    Article  Google Scholar 

  • Majumdar S, Peralta-Videa JR, Trujillo-Reyes J, Sun Y, Barrios AC, Niu G, Flores- Margez JP, Gardea-Torresdey JL (2016) Soil organic matter influences cerium translocation and physiological processes in kidney bean plants exposed to cerium oxide nanoparticles. Sci Total Environ 569–570:201–211

    Article  CAS  Google Scholar 

  • Maliszewska I (2016) Effects of the biogenic gold nanoparticles on microbial community structure and activities. Ann Microbiol 66:785–794. https://doi.org/10.1007/s13213-015-1158-2

    Article  Google Scholar 

  • Mastronardi E, Tsae P, Zhang X, Monreal C, DeRosa MC (2015) Strategic role of nanotechnology in fertilizers: potential and limitations. In: Rai M et al (eds) Nanotechnologies in food and agriculture. Springer, Cham, pp 25–67. https://doi.org/10.1007/978-3-319-14024-7_2

    Google Scholar 

  • Matraszek R, Hawrylak-Nowak B, Chwil S, Chwil M (2016) Macroelemental composition of cadmium stressed lettuce plants grown under conditions of intensive sulphur nutrition. J Environ Manag 180:24–34

    Article  CAS  Google Scholar 

  • Meguid SA (2016) Advances in nanocomposites: modeling, characterization and applications. Springer, Cham. https://doi.org/10.1007/978-3-319-31662-8

    Book  Google Scholar 

  • Mehlhorn H (2016) Nanoparticles in the fight against parasites, Parasitology research monographs series, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-25292-6

    Google Scholar 

  • Meredith AN, Harper B, Harper SL (2016) The influence of size on the toxicity of an encapsulated pesticide: a comparison of micron- and nano-sized capsules. Environ Int 86:68–74

    Article  CAS  Google Scholar 

  • Miller MA, Weissleder R (2016) Imaging the pharmacology of nanomaterials by intravital microscopy: toward understanding their biological behavior. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2016.05.023

  • Mitra GN (2015) Regulation of nutrient uptake by plants: a biochemical and molecular approach. Springer, Delhi, India. https://doi.org/10.1007/978-81-322-2334-4

    Book  Google Scholar 

  • Mohamed AL, El-Naggar ME, Shaheen TI, Hassabo AG (2016) Novel nano polymeric system containing biosynthesized core shell silver/silica nanoparticles for functionalization of cellulosic based material. Microsyst Technol 22:979–992. https://doi.org/10.1007/s00542-015-2776-0

    Article  CAS  Google Scholar 

  • Mohammadi A, Hashemi M, Hosseini SM (2016) Postharvest treatment of nanochitosan-based coating loaded with Zataria multiflora essential oil improves antioxidant activity and extends shelf-life of cucumber. Innovative Food Sci Emerg Technol 33:580–588

    Article  CAS  Google Scholar 

  • Moll J, Gogos A, Bucheli TD, Widmer F, van der Heijden MGA (2016) Effect of nanoparticles on red clover and its symbiotic microorganisms. J Nanobiotechnol 14:36. https://doi.org/10.1186/s12951-016-0188-7.

    Article  CAS  Google Scholar 

  • Mustafa G, Komatsu S (2016) Toxicity of heavy metals and metal-containing nanoparticles on plants. Biochim Biophy Acta Proteins Proteomics 1864(8):932–944

    Article  CAS  Google Scholar 

  • Nair PMG, Chung IM (2014a) A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. Biol Trace Elem Res 162(1-3):342–352

    Article  CAS  Google Scholar 

  • Nair PMG, Chung IM (2014b) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification, and molecular level changes. Environ Sci Pollut Res 21(22):12709–12722

    Article  CAS  Google Scholar 

  • Nair PMG, Chung IM (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.) Ecotoxicol Environ Safe 113:302–313

    Article  CAS  Google Scholar 

  • Noguera-Oviedo K, Aga DS (2016) Lessons learned from more than two decades of research on emerging contaminants in the environment. J Hazard Mater 316:242–251

    Article  CAS  Google Scholar 

  • Nowack B, David RM, Fissan H, Morris H, Shatkin JA, Stintz M, Zepp R, Brouwer D (2013) Potential release scenarios for carbon nanotubes used in composites. Environ Int 59:1–11

    Article  CAS  Google Scholar 

  • Nowack B, Mueller NC, Krug HF, Wick P (2014) How to consider engineered nanomaterials in major accident regulations? Environ Sci Eur 26:2

    Article  CAS  Google Scholar 

  • Nowack B, Baalousha M, Bornhoft N, Chaudhry Q, Cornelis G, Cotterill J, Gondikas A, Hassellov M, Lead JR, Mitrano DM, von der Kammer F, Wontner-Smith T (2015) Progress towards the validation of modeled environmental concentrations of engineered nanomaterials by analytical measurements. Environ Sci Nano 2:421–428

    Article  CAS  Google Scholar 

  • Nowack B, Bornhoft N, Ding Y, Riediker M, Jimenez AS, Sun T, van Tongeren M, Wohlleben W (2016) The flows of engineered nanomaterials from production, use, and disposal to the environment. In: Viana M (ed) Indoor and outdoor nanoparticles: determinants of release and exposure scenarios, Hdb Env Chem, vol 48. Springer, Cham, pp 209–232. https://doi.org/10.1007/698_2015_402

    Chapter  Google Scholar 

  • Oburger E, Schmidt H (2016) New methods to unravel rhizosphere processes. Trends Plant Sci 21(3). https://doi.org/10.1016/j.tplants.2015.12.005

  • Olivo M, Dinish US (2016) Frontiers in biophotonics for translational medicine: in the celebration of year of light (2015), Progress in optical science and photonics series, vol 3. Springer, Singapore. https://doi.org/10.1007/978-981-287-627-0

    Book  Google Scholar 

  • Osmond MJ, McCall MJ (2010) Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard. Nanotoxicology 4:15–41

    Article  CAS  Google Scholar 

  • Pachapur VL, Larios AD, Cledón M, Brar SK, Verma M, Surampalli RY (2016) Behavior and characterization of titanium dioxide and silver nanoparticles in soils. Sci Total Environ 563–564:933–943

    Article  CAS  Google Scholar 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles: the next generation technology for sustainable agriculture. In: Singh DP et al (eds) Microbial inoculants in sustainable agricultural productivity. Springer, Delhi, India, pp 289–300. https://doi.org/10.1007/978-81-322-2644-4_18

    Chapter  Google Scholar 

  • Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10:124–127. https://doi.org/10.1016/j.nantod.2014.09.009

    Article  CAS  Google Scholar 

  • Park CM, Chu KH, Heo J, Her N, Jang M, Son A, Yoon Y (2016) Environmental behavior of engineered nanomaterials in porous media: a review. J Hazard Mater 309:133–150

    Article  CAS  Google Scholar 

  • Patra P, Choudhury SR, Mandal S, Basu A, Goswami A, Gogoi R, Srivastava C, Kumar R, Gopal M (2013) Effect sulfur and ZnO nanoparticles on stress physiology and plant (Vigna radiata) nutrition. In: Giri PK, et al (eds) Advanced nanomaterials and nanotechnology. Springer proceedings in physics, vol 143. Springer-Verlag Berlin Heidelberg, pp 301–309. Doi:10.1007/978-3-642-34216-5_31

    Google Scholar 

  • Pawlett M, Ritz K, Dorey RA, Rocks S, Ramsden J, Harris JA (2013) The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environ Sci Pollut Res Int 20:1041–1049

    Article  CAS  Google Scholar 

  • Peixoto AF, Fernandes AC, Pereira C, Pires J, Freire C (2016) Physicochemical characterization of organosilylated halloysite clay nanotubes. Microporous Mesoporous Mater 219:145–154

    Article  CAS  Google Scholar 

  • Peralta-Videa JR, Hernandez-Viezcas JA, Zhao L, Diaz BC, Ge Y, Priester JH, Holden PA, Gardea-Torresdey JL (2014) Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants. Plant Physiol Biochem 80:128–135

    Article  CAS  Google Scholar 

  • Peters RJB, Bouwmeester H, Gottardo S, Amenta V, Arena M, Brandhoff P, Marvin HJP, Mech A, Botelho Moniz F, Pesudo LQ, Rauscher H, Schoonjans R, Undas AK, Vettori MV, Weigel S, Aschberger K (2016) Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci Technol. https://doi.org/10.1016/j.tifs.2016.06.008

  • Piperigkou Z, Karamanou K, Engin AB, Gialeli C, Docea AO, Vynios DH, Pavão MSG, Golokhvast KS, Shtilman MI, Argiris A, Shishatskaya E, Tsatsakis AM (2016) Emerging aspects of nanotoxicology in health and disease: from agriculture and food sector to cancer therapeutics. Food Chem Toxicol 91:42–57

    Article  CAS  Google Scholar 

  • Polis P, Mosdorf P, Karwowska E, Jastrzebska A, Olszyna A, Kunicki A, Piramidowicz R, Anders K, Jusza A (2013) Influence of Al2O3/Pr nanoparticles on soil, air and water microorganisms. In: Öchsner A et al (eds) Characterization and development of biosystems and biomaterials, Advanced structured materials, vol 29. Springer, Berlin, pp 1–8. https://doi.org/10.1007/978-3-642-31470-4_1

    Chapter  Google Scholar 

  • Priyadarshini E, Pradhan N (2016) Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: a review. Sensors and Actuators B Chem. https://doi.org/10.1016/j.snb.2016.06.081

  • Pulimi M, Subramanian S (2016) Nanomaterials for soil fertilisation and contaminant removal. In: Ranjan S et al (eds) Nanoscience in food and agriculture 1, Sustainable agriculture reviews, vol 20. Springer, Cham, pp 229–246. https://doi.org/10.1007/978-3-319-39303-2_9

    Chapter  Google Scholar 

  • Qureshi MI, Awan U, Arshad Z, Rasli AM, Zaman K, Khan F (2016) Dynamic linkages among energy consumption, air pollution, greenhouse gas emissions and agricultural production in Pakistan: sustainable agriculture key to policy success. Nat Hazards 84:367–381. https://doi.org/10.1007/s11069-016-2423-9

    Article  Google Scholar 

  • Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomat Nanobiotechnol 3:315–324

    Article  CAS  Google Scholar 

  • Raman CD, Kanmani S (2016) Textile dye degradation using nano zero valent iron: a review. J Environ Manag 177:341–355. https://doi.org/10.1016/j.jenvman.2016.04.034

    Article  CAS  Google Scholar 

  • Ranjan S, Dasgupta N, Chakraborty AR, Melvin Samuel S, Ramalingam C, Shanker R, Kumar A (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16(6):1–23

    Google Scholar 

  • Ranjan S, Dasgupta N, Sudandiradoss C, Ramalingam C, Ashutosh K (2015) A novel approach to evaluate titanium dioxide nanoparticle-protein interaction through docking: an insight into the mechanism of action. Proc Nat Acad Sci India Sect B Biol Sci 87(3):937–943

    Google Scholar 

  • Ranjan S, Dasgupta N, Srivastava P, Ramalingam C (2016) A spectroscopic study on interaction between bovine serum albumin and titanium dioxide nanoparticle synthesized from microwave-assisted hybrid chemical approach. J Photochem Photobiol B Biol 161:472–481

    Google Scholar 

  • Ray M, Ray A, Dash S, Mishra A, Achary KG, Nayak S, Singh S (2017) Fungal disease detection in plants: traditional assays, novel diagnostic techniques and biosensors. Biosens Bioelectron 87:708–723

    Article  CAS  Google Scholar 

  • Reddy PVL, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2016) Lessons learned: are engineered nanomaterials toxic to terrestrial plants? Sci Total Environ 568:470–479

    Article  CAS  Google Scholar 

  • Rico CM, Morales MI, Barrios AC, McCreary AC, Hong J, Lee W, Nunez J, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J Agric Food Chem 61:11278–11285. https://doi.org/10.1021/jf404046v

    Article  CAS  Google Scholar 

  • Rico CM, Lee SC, Rubenecia R, Mukherjee A, Hong J, Peralta-Videa JR, Gardea-Torresdey JL (2014) Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.) J Agric Food Chem 62:9669–9675

    Article  CAS  Google Scholar 

  • Rico CM, Barrios AC, Tan W, Rubenecia R, Lee SC, Varela-Ramirez A, Peralta-Videa JR, Gardea-Torresdey JL (2015a) Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environ Sci Pollut Res 22:10551–10558. https://doi.org/10.1007/s11356-015-4243-y

    Article  CAS  Google Scholar 

  • Rico CM, Peralta-Videa JR, Gardea-Torresdey JL (2015b) Chemistry, biochemistry of nanoparticles and their role in antioxidant defense system in plants. In: Siddiqui MH, Al-Whaibi MH, Mohammed F (eds) Nanotechnology and plant sciences. Nanoparticles and their impact on plants, pp 1–17. https://doi.org/10.1007/978-3-319-14502-0_1 Chapter 1

  • Rizwan M, Ali S, Adrees M, Rizvi H, Zia-ur-Rehman M, Hannan F, Qayyum MF, Hafeez F, Ok YS (2016a) Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-016-6436-4

  • Rizwan M, Ali S, Qayyum MF, Ok YS, Adrees M, Ibrahim M, Zia-ur-Rehman M, Farid M, Abbas F (2016b) Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2016.05.061

  • Rodrigues SM, Trindade T, Duarte AC, Pereira E, Koopmans GF, Römkens PFAM (2016) A framework to measure the availability of engineered nanoparticles in soils: trends in soil tests and analytical tools. Trends Anal Chem 75:129–140

    Article  CAS  Google Scholar 

  • Saccà ML, Fajardo C, Costa G, Lobo C, Nande M, Martin M (2014) Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms. Chemosphere 104:184–189

    Article  CAS  Google Scholar 

  • Sadik OA, Du N, Kariuki V, Okello V, Bushlyar V (2014) Current and emerging technologies for the characterization of nanomaterials. ACS Sustain Chem Eng 2:1707–1716. https://doi.org/10.1021/sc500175v

    Article  CAS  Google Scholar 

  • Samiei M, Farjami A, Dizaj SM, Lotfipour F (2016) Nanoparticles for antimicrobial purposes in Endodontics: a systematic review of in vitro studies. Mater Sci Eng C 58:1269–1278

    Article  CAS  Google Scholar 

  • Sarkar P, Irshaan S, Sivapratha S, Choudhary R (2016) Nanotechnology in food processing and packaging. In: Ranjan S et al (eds) Nanoscience in food and agriculture 1, Sustainable agriculture reviews, vol 20. Springer, Cham, pp 185–227. https://doi.org/10.1007/978-3-319-39303-2_9

    Chapter  Google Scholar 

  • Sarmast MK, Salehi H (2016) Silver nanoparticles: an influential element in plant nanobiotechnology. Mol Biotechnol 58:441–449. https://doi.org/10.1007/s12033-016-9943-0

    Article  CAS  Google Scholar 

  • Schwabe F, Schulin R, Limbach LK, Stark W, Bürge D, Nowack B (2013) Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere 91(4):512–520

    Article  CAS  Google Scholar 

  • Servin AD, White JC (2016) Nanotechnology in agriculture: next steps for understanding engineered nanoparticle exposure and risk. NanoImpact 1:9–12. https://doi.org/10.1016/j.impact.2015.12.002

    Article  Google Scholar 

  • Shalaby T, Bayoumi Y, Abdalla N, Taha H, Alshaal T, Shehata S, Amer M, Domokos-Szabolcsy É, El-Ramady H (2016) Nanoparticles, soils, plants and sustainable agriculture. In: Ranjan S et al (eds) Nanoscience in food and agriculture 1, Sustainable agriculture reviews, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-39303-2_10

    Chapter  Google Scholar 

  • Shao J, He Y, Zhang H, Chen A, Lei M, Chen J, Peng L, Gu J-D (2016) Silica fertilization and nano-MnO2 amendment on bacterial community composition in high arsenic paddy soils. Appl Microbiol Biotechnol 100:2429–2437. https://doi.org/10.1007/s00253-015-7131-y

    Article  CAS  Google Scholar 

  • Shaw R, Lark RM, Williams AP, Chadwick DR, Jones DL (2016) Characterising the within-field scale spatial variation of nitrogen in a grassland soil to inform the efficient design of in-situ nitrogen sensor networks for precision agriculture. Agric Ecosyst Environ 230:294–306

    Article  Google Scholar 

  • Shen Z, Chen Z, Hou Z, Li T, Lu X (2015) Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms. Front Environ Sci Eng 9(5):912–918. https://doi.org/10.1007/s11783-015-0789-7

    Article  CAS  Google Scholar 

  • Shoults-Wilson W, Zhurbich O, McNear D, Tsyusko O, Bertsch P, Unrine J (2011) Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida). Ecotoxicology 20:385–396

    Article  CAS  Google Scholar 

  • Shukla A, Dasgupta N, Ranjan S, Singh S, Chidambram R (2017) Nanotechnology towards prevention of anaemia and osteoporosis: from concept to market. Biotechnol Biotechnol Equip 31(5):863–879

    Google Scholar 

  • Singh A, Gaharwar AK (2016) Microscale technologies for cell engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-20726-1

    Book  Google Scholar 

  • Singh J, Lee B-K (2016) Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): a possible mechanism for the removal of Cd from the contaminated soil. J Environ Manag 170:88–96

    Article  CAS  Google Scholar 

  • Singh P, Kim Y-J, Zhang D, Yang D-C (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599

    Article  CAS  Google Scholar 

  • Siripireddy B, Mandal BK, Ranjan S, Dasgupta N, Ramalingam C (2017) Nano-zirconia – Evaluation of its antioxidant and anticancer activity. J Photochem Photobiol B Biol 170:125–133

    Google Scholar 

  • Skalickova S, Milosavljevic V, Cihalova K, Horky P, Richtera L, Adam V (2016) Perspective of selenium nanoparticles as a nutrition supplement. Nutrition. https://doi.org/10.1016/j.nut.2016.05.001

  • Sodipo BK, Abdul Aziz A (2016) Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica. J Magn Magn Mater 416:275–291

    Article  CAS  Google Scholar 

  • Sogvar OB, Saba MK, Emamifar A, Hallaj R (2016) Influence of nano-ZnO on microbial growth, bioactive content and postharvest quality of strawberries during storage. Innovative Food Sci Emerg Technol 35:168–176

    Article  CAS  Google Scholar 

  • Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015) Nano-fertilizers and their smart delivery system. In: Rai M et al (eds) Nanotechnologies in food and agriculture. Springer, Cham, pp 81–101. https://doi.org/10.1007/978-3-319-14024-7_4

    Google Scholar 

  • Song U, Lee S (2016) Phytotoxicity and accumulation of zinc oxide nanoparticles on the aquatic plants Hydrilla verticillata and Phragmites Australis: leaf-type-dependent responses. Environ Sci Pollut Res 23:8539–8545. https://doi.org/10.1007/s11356-015-5982-5

    Article  CAS  Google Scholar 

  • Song H, Yuan W, Jin P, Wang W, Wang X, Yang L, Zhang Y (2016) Effects of chitosan/nano-silica on postharvest quality and antioxidant capacity of loquat fruit during cold storage. Postharvest Biol Technol 119:41–48

    Article  CAS  Google Scholar 

  • Souza VGL, Fernando AL (2016) Nanoparticles in food packaging: biodegradability and potential migration to food: a review. Food Packag Shelf Life 8:63–70. https://doi.org/10.1016/j.fpsl.2016.04.001

    Article  Google Scholar 

  • Sri Sindhura K, Prasad TNVKV, Panner Selvam P, Hussain OM (2014) Synthesis, characterization and evaluation of effect of phytogenic zinc nanoparticles on soil exo-enzymes. Appl Nanosci 4:819–827. https://doi.org/10.1007/s13204-013-0263-4

    Article  CAS  Google Scholar 

  • Stefaniuk M, Oleszczuk P, Ok YS (2016) Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Chem Eng J 287:618–632. https://doi.org/10.1016/j.cej.2015.11.046

    Article  CAS  Google Scholar 

  • Steinhoff G (2016) Regenerative medicine – from protocol to patient: 3. Tissue engineering, biomaterials and nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-28274-9

    Book  Google Scholar 

  • Subramanian KS, Manikandan A, Thirunavukkarasu M, Rahale CS (2015) Nano-fertilizers for balanced crop nutrition. In: Rai M et al (eds) Nanotechnologies in food and agriculture. Springer, Cham, pp 69–80. https://doi.org/10.1007/978-3-319-14024-7_3

    Google Scholar 

  • Subramanian KS, Muniraj I, Uthandi S (2016) Role of actinomycete-mediated nanosystem in agriculture. In: Subramaniam G et al (eds) Plant growth promoting actinobacteria. Springer, Singapore, pp 233–247. https://doi.org/10.1007/978-981-10-0707-1_15

    Chapter  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Prabu P, Rajendran V, Kannan N (2012) Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. J Nanopart Res 14:1294. https://doi.org/10.1007/s11051-012-1294-6

    Article  CAS  Google Scholar 

  • Szoboszlay M, Lambers J, Chappell J, Kupper JV, Moe LA, McNear Jr. DH (2015) Comparison of root system architecture and rhizosphere microbial communities of Balsas teosinte and domesticated corn cultivars. Soil Biol Biochem 80:34–44

    Article  CAS  Google Scholar 

  • Tammina SK, Mandal BK, Ranjan S, Dasgupta N (2017) Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. J Photochem Photobiol B Biol 166:158–168

    Google Scholar 

  • Tarafdar JC, Sharma S, Raliya R (2013) Nanotechnology: interdisciplinary science of applications. Afr J Biotechnol 12(3):219–226

    Article  Google Scholar 

  • Thio BJR, Montes MO, Mahmoud MA, Lee DW, Zhou D, Keller AA (2012) Mobility of capped silver nanoparticles under environmentally relevant conditions. Environ Sci Technol 46:6985–6991

    Article  CAS  Google Scholar 

  • Thul ST, Sarangi BK (2015) Implications of nanotechnology on plant productivity and its rhizospheric environment. In: Siddiqui MH et al (eds) Nanotechnology and plant sciences. Springer, Cham, pp 37–53. https://doi.org/10.1007/978-3-319-14502-0_3

    Google Scholar 

  • Tolaymat T, Abdelraheem W, El Badawy A, Dionysiou D, Genaidy A (2016) The path towards healthier societies, environments, and economies: a broader perspective for sustainable engineered nanomaterials. Clean Technol Environ Policy. https://doi.org/10.1007/s10098-016-1146-7

  • Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2016) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2016.06.026

  • Troester M, Brauch H-J, Hofmann T (2016) Vulnerability of drinking water supplies to engineered nanoparticles. Water Res 96:255–279

    Article  CAS  Google Scholar 

  • UNEP (2007) Emerging challenges-nanotechnology and the environment. In: GEO year book. United Nations Environment Programme Division of Early Warning and Assessment, Nairobi, pp 61–70

    Google Scholar 

  • Van Koetsem F, Van Havere L, Du Laing G (2016) Impact of carboxymethyl cellulose coating on iron sulphide nanoparticles stability, transport, and mobilization potential of trace metals present in soils and sediment. J Environ Manag 168:210–218

    Article  CAS  Google Scholar 

  • Vélez MA, Perotti MC, Santiago L, Gennaro AM, Hynes E (2017) Bioactive compounds delivery using nanotechnology: design and applications in dairy food. In: Grumezescu AM (ed) Nutrient delivery: a volume in nanotechnology in the agri-food industry. Academic Press, Amsterdam, pp 221–250

    Chapter  Google Scholar 

  • Villoria NB, Elliott J, Müller C, Shin J, Zhao L, Song C (2016) Rapid aggregation of global gridded crop model outputs to facilitate cross-disciplinary analysis of climate change impacts in agriculture. Environ Model Softw 75:193–201

    Article  Google Scholar 

  • Vítková M, Rákosová S, Michálková Z, Komárek M (2016) Metal(loid)s behaviour in soils amended with nano zero-valent iron as a function of pH and time. J Environ Manag. https://doi.org/10.1016/j.jenvman.2016.06.003

  • Waalewijn-Kool PL, Rupp S, Lofts S, Svendsen C, van Gestel CAM (2014) Effect of soil organic matter content and pH on the toxicity of ZnO nanoparticles to Folsomia candida. Ecotoxicol Environ Saf 108:9–15

    Article  CAS  Google Scholar 

  • Walia N, Dasgupta N, Ranjan S, Chen L, Ramalingam C (2017) Fish oil based vitamin D nanoencapsulation by ultrasonication and bioaccessibility analysis in simulated gastro-intestinal tract. Ultrason Sonochem 39:623–635

    Google Scholar 

  • Wang Q, Ebbs SD, Chen Y, Ma X (2013) Trans-generational impact of cerium oxide nanoparticles on tomato plants. Metallomics 5:753–759

    Article  CAS  Google Scholar 

  • Wang S, Wang F, Gao S (2015) Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environ Sci Pollut Res 22:2837–2845. https://doi.org/10.1007/s11356-014-3525-0

    Article  CAS  Google Scholar 

  • Wang J, Fang Z, Cheng W, Tsang PE, Zhao D (2016a) Ageing decreases the phytotoxicity of zero-valent iron nanoparticles in soil cultivated with Oryza sativa. Ecotoxicology. https://doi.org/10.1007/s10646-016-1674-2

  • Wang F, Liu X, Shi Z, Tong R, Adams CA, Shi X (2016b) Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants—a soil microcosm experiment. Chemosphere 147:88–97. https://doi.org/10.1016/j.chemosphere.2015.12.076

    Article  CAS  Google Scholar 

  • Wang S, Wang F, Gao S, Wang X (2016c) The role of nano-silicon and its foliar application on heavy metals accumulation in different rice cultivars. Water Air Soil Pollut 227:228. https://doi.org/10.1007/s11270-016-2928-6

    Article  CAS  Google Scholar 

  • Watson J-L, Fang T, Dimkpa CO, Britt DW, McLean JE, Jacobson A, Anderson AJ (2015) The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28:101–112. https://doi.org/10.1007/s10534-014-9806-8

    Article  CAS  Google Scholar 

  • Wigger H, Hackmann S, Zimmermann T, Köser J, Thöming J, Gleich A v (2015) Influences of use activities and waste management on environmental releases of engineered nanomaterials. Sci Total Environ 535:160–171

    Article  CAS  Google Scholar 

  • Xie Y, Cheng W, Tsang PE, Fang Z (2016) Remediation and phytotoxicity of decabromodiphenyl ether contaminated soil by zero valent iron nanoparticles immobilized in mesoporous silica microspheres. J Environ Manag 166:478–483

    Article  CAS  Google Scholar 

  • Xie Y, Dong H, Zeng G, Tang L, Jiang Z, Zhang C, Deng J, Zhang L, Zhang Y (2017) The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: a review. J Hazard Mater 321:390–407

    Article  CAS  Google Scholar 

  • Xiong SJ, Xu WH, Xie WW, Chen R, Chen YQ, Chi SL, Chen X, Zhang JZ, Xiong ZT, Wang ZY, Xie DT (2015) Effect of nano zeolite on chemical fractions of Cd in soil and its uptake by cabbage. Huan Jing Ke Xue 36(12):4630–4641. (Article in Chinese)

    CAS  Google Scholar 

  • Xu C, Peng C, Sun L, Zhang S, Huang H, Chen Y, Shi J (2015) Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddysoil. Soil Biol Biochem 86:24–23

    Article  CAS  Google Scholar 

  • Yang Y-F, Cheng Y-H, Liao C-M (2016) In situ remediation-released zero-valent iron nanoparticles impair soil ecosystems health: a C. elegans biomarker-based risk assessment. J Hazard Mater 317:210–220

    Article  CAS  Google Scholar 

  • Yausheva E, Sizova Е, Lebedev S, Skalny A, Miroshnikov S, Plotnikov A, Khlopko Y, Gogoleva N, Cherkasov S (2016) Influence of zinc nanoparticles on survival of worms Eisenia fetida and taxonomic diversity of the gut microflora. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-016-6474-y

  • Yirsaw BD, Megharaj M, Chen Z, Naidu R (2016) Environmental application and ecological significance of nano-zero valent iron. J Environ Sci 44:88–98

    Article  Google Scholar 

  • Yuvaraj M, Subramanian KS (2015) Controlled-release fertilizer of zinc encapsulated by a manganese hollow core shell. Soil Sci Plant Nutr 61(2):319–326. https://doi.org/10.1080/00380768.2014.979327

  • Zarschler K, Rocks L, Licciardello N, Boselli L, Polo E, Garcia KP, De Cola L, Stephan H, Dawson KA (2016) Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications. Nanomedicine 12(6):1663–1701

    Article  CAS  Google Scholar 

  • Zhang X-S (2016) Micro/nano integrated fabrication technology and its applications in microenergy harvesting. Springer, Berlin. https://doi.org/10.1007/978-3-662-48816-4

    Book  Google Scholar 

  • Zhang M, Naik RR, Dai L (2016) Carbon nanomaterials for biomedical applications, Springer series in biomaterials science and engineering series, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-22861-7

    Book  Google Scholar 

  • Zhang P, Ma Y, Zhang Z (2016a) Interactions between engineered nanomaterials and plants: phytotoxicity, uptake, translocation, and biotransformation. In: Siddiqui MH et al (eds) Nanotechnology and plant sciences. Springer, Cham, pp 77–99. https://doi.org/10.1007/978-3-319-14502-0_5

    Google Scholar 

  • Zhang W, Musante C, White JC, Schwab P, Wang Q, Ebbs SD, Ma X (2016b) Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils. Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2015.12.013

  • Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62:2752–2759. https://doi.org/10.1021/jf405476u

    Article  CAS  Google Scholar 

  • Zhao X, Liu W, Cai Z, Han B, Qian T, Zhao D (2016) An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res 100:245–266. https://doi.org/10.1016/j.watres.2016.05.019

    Article  CAS  Google Scholar 

  • Zuverza-Mena N, Martínez-Fernandez D, Du W, Hernandez-Viezcas JA, Bonilla-Bird N, Lopez-Moreno ML, Komarek M, Peralta-Videa JR, Gardea-Torresdey JL (2016) Exposure of engineered nanomaterials to plants: insights into the physiological and biochemical responses-a review. Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2016.05.037

Download references

Acknowledgements

Authors thank the outstanding contribution of STDF research teams (Science and Technology Development Fund, Egypt) and MBMF/DLR (the Federal Ministry of Education and Research of the Federal Republic of Germany), (Project ID 5310) for their help. Great support from this German-Egyptian Research Fund (GERF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan El-Ramady .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Ramady, H. et al. (2018). Plant Nano-nutrition: Perspectives and Challenges. In: Gothandam, K., Ranjan, S., Dasgupta, N., Ramalingam, C., Lichtfouse, E. (eds) Nanotechnology, Food Security and Water Treatment. Environmental Chemistry for a Sustainable World. Springer, Cham. https://doi.org/10.1007/978-3-319-70166-0_4

Download citation

Publish with us

Policies and ethics