Skip to main content

Comparison Moduli Spaces of Riemann Surfaces

  • Chapter
  • First Online:
Complex Analysis and Dynamical Systems

Part of the book series: Trends in Mathematics ((TM))

Abstract

We define a kind of moduli space of nested surfaces and mappings, which we call a comparison moduli space. We review examples of such spaces in geometric function theory and modern Teichmüller theory, and illustrate how a wide range of phenomena in complex analysis are captured by this notion of moduli space. The paper includes a list of open problems in classical and modern function theory and Teichmüller theory ranging from general theoretical questions to specific technical problems.

Dedicated to the memory of Alexander Vasil’ev

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    After this chapter was submitted in May 2016, the paper [80] of Yanagishita appeared, in which it was shown that for surfaces satisfying Lehner’s condition, the Weil-Petersson metric is indeed Kähler and the sectional and Ricci curvatures are negative. The convergent Weil-Petersson metric was obtained independently of Radnell, Schippers and Staubach [47, 51]. Yanagishita [80] also showed that the complex structure from harmonic Beltrami differentials is compatible with the complex structure from the Bers embedding. When combined with the results of [51], this apparently shows that these two complex structures are equivalent to that obtained from fibrations over the compact surfaces for surfaces of type (g, n).

References

  1. L.V. Ahlfors, Classical and contemporary analysis. SIAM Rev. 3, 1–9 (1961)

    Google Scholar 

  2. L.V. Ahlfors, Some remarks on Teichmller’s space of Riemann surfaces. Ann. Math. (2) 74, 171–191 (1961)

    Google Scholar 

  3. L.V. Ahlfors, Curvature properties of Teichmüller’s space. J. Anal. Math. 9, 161–176 (1961/1962)

    Google Scholar 

  4. L.V. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory. McGraw-Hill Series in Higher Mathematics (McGraw-Hill Book, New York-Düsseldorf-Johannesburg, 1973)

    Google Scholar 

  5. L.V. Ahlfors, L. Sario, Riemann Surfaces (Princeton University Press, Princeton, NJ, 1960)

    Google Scholar 

  6. S. Bergman, M. Schiffer, Kernel functions and conformal mapping. Comp. Math. 8, 205–249 (1951)

    Google Scholar 

  7. M.J. Bowick, S.G. Rajeev, The holomorphic geometry of closed bosonic string theory and \(\text{Diff}(\mathbb {S}^1)/\mathbb {S}^1\). Nucl. Phys. B 293(2), 348–384 (1987)

    Google Scholar 

  8. R. Courant, Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces. With an appendix by M. Schiffer. Reprint of the 1950 original (Springer, New York, Heidelberg, 1977)

    Google Scholar 

  9. G. Cui, Integrably asymptotic affine homeomorphisms of the circle and Teichmüller spaces, Sci. China Ser. A 43(3), 267–279 (2000)

    Google Scholar 

  10. G. Cui, M. Zinsmeister, BMO-Teichmüller spaces. Ill. J. Math. 48(4), 1223–1233 (2004)

    Google Scholar 

  11. V.N. Dubinin, Condenser Capacities and Symmetrization in Geometric Function Theory. Translated from the Russian by Nikolai G. Kruzhilin (Springer, Basel, 2014)

    Google Scholar 

  12. P. Duren, Univalent Functions. Grundlehren der Mathematischen Wissenschaften, vol. 259 (Springer, New York, 1983)

    Google Scholar 

  13. C.J. Earle, F.P. Gardiner, N. Lakic, Asymptotic Teichmller Space. I. The Complex Structure. In the tradition of Ahlfors and Bers (Stony Brook, NY, 1998). Contemporary Mathematics, vol. 256 (American Mathematical Society, Providence, RI, 2000), pp. 17–38

    Google Scholar 

  14. A. Figalli, On flows of \(H^{\frac 32}\)-vector fields on the circle. Math. Ann. 347, 43–57 (2010)

    Google Scholar 

  15. F.P. Gardiner, Schiffer’s interior variation and quasiconformal mapping. Duke Math. J. 42, 371–380 (1975)

    Google Scholar 

  16. F. Gay-Balmaz, Infinite dimensional geodesic flows and the universal Teichmller space. Thèse École polytechnique fédérale de Lausanne EPFL, vol. 4254 (2009). https://doi.org/https://doi.org/10.5075/epfl-thesis-4254

  17. F. Gay-Balmaz, T.S. Ratiu, The geometry of the universal Teichmüller space and the Euler-Weil-Petersson equation. Adv. Math. 279, 717–778 (2015)

    Google Scholar 

  18. F.W. Gehring, K. Hag, The Ubiquitous Quasidisk. With contributions by Ole Jacob Broch. Mathematical Surveys and Monographs, vol. 184 (American Mathematical Society, Providence, RI, 2012)

    Google Scholar 

  19. A.Z. Grinshpan, Logarithmic geometry, exponentiation, and coefficient bounds in the theory of univalent functions and non-overlapping domains, in Handbook of Complex Analysis: Geometric Function Theory, ed. by R. Kühnau, vol. I (North-Holland, Amsterdam, 2002)

    Google Scholar 

  20. E. Grong, I. Markina, A. Vasil’ev, Sub-Riemannian structures corresponding to Kählerian metrics on the universal Teichmüller space and curve, in “60 years of Analytic Functions in Lublin” in Memory of Our Professors and Friends Jan G. Krzyż, Zdzisław Lewandowski and Wojciech Szapiel, vol. 97116. Monographs University of Economics and Innovation in Lublin (Innovatio Press Scientific Publishing House, Lublin, 2012)

    Google Scholar 

  21. H. Grötzsch, Über einige Extremalprobleme der konformen Abbildung. II. Ber. Verh. sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 80, 497–502 (1928)

    Google Scholar 

  22. H. Guo, Integrable Teichmüller spaces. Sci. China Ser. A 43(1), 47–58 (2000)

    Google Scholar 

  23. D.K. Hong, S.G. Rajeev, Universal Teichmller space and \(\text{Diff}(\mathbb {S}^1)/\mathbb {S}^1\). Commun. Math. Phys. 135(2), 401–411 (1991)

    Google Scholar 

  24. Y. Hu, Y. Shen, On quasisymmetric homeomorphisms. Isr. J. Math. 191, 209–226 (2012)

    Google Scholar 

  25. Y.-Z. Huang, Two-Dimensional Conformal Geometry and Vertex Operator Algebras. Progress in Mathematics, vol. 148 (Birkhäuser, Boston, MA, 1997)

    Google Scholar 

  26. J.H. Hubbard, Teichmüller Theory and Applications to Geometry, Topology, and Dynamics, Vol. 1. Teichmüller Theory. With contributions by Adrien Douady, William Dunbar, Roland Roeder, Sylvain Bonnot, David Brown, Allen Hatcher, Chris Hruska and Sudeb Mitra. With forewords by William Thurston and Clifford Earle (Matrix Editions, Ithaca, NY, 2006)

    Google Scholar 

  27. J.A. Jenkins, Univalent Functions and Conformal Mapping. Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Heft 18. (Springer, Berlin, 1958)

    Google Scholar 

  28. B. Khesin, R. Wendt, The Geometry of Infinite-Dimensional Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 51 (Springer, Berlin, 2009)

    Google Scholar 

  29. A.A. Kirillov, D.V. Yuriev, Representations of the Virasoro algebra by the orbit method. J. Geom. Phys. 5(3), 351–363 (1988)

    Google Scholar 

  30. S. Kushnarev, Teichons: soliton-like geodesics on universal Teichmüller space. Exp. Math.18, 325–336 (2009)

    Google Scholar 

  31. O. Lehto, Univalent Functions and Teichmüller Spaces. Graduate Texts in Mathematics, vol. 109 (Springer, New York, 1987)

    Google Scholar 

  32. I. Markina, A. Vasil’ev, Virasoro algebra and dynamics in the space of univalent functions, in Five lectures in complex analysis. Contemporary Mathematics, vol. 525, pp. 85–116 (American Mathematical Society, Providence, RI, 2010)

    Google Scholar 

  33. I. Markina, D. Prokhorov, A. Vasil’ev, Sub-Riemannian geometry of the coefficients of univalent functions. J. Funct. Anal. 245(2), 475–492 (2007)

    Google Scholar 

  34. S. Nag, The Complex Analytic Theory of Teichmüller Spaces. Canadian Mathematical Society Series of Monographs and Advanced Texts (Wiley, New York, 1988)

    Google Scholar 

  35. S. Nag, A period mapping in universal Teichmller space. Bull. Amer. Math. Soc. (N.S.) 26(2), 280–287 (1992)

    Google Scholar 

  36. S. Nag, D. Sullivan, Teichmüller theory and the universal period mapping via quantum calculus and the H 1/2 space on the circle. Osaka J. Math. 32(1), 1–34 (1995)

    Google Scholar 

  37. S. Nag, A. Verjovsky, Diff(\(\mathbb {S}^1\)) and the Teichmüller spaces. Commun. Math. Phys. 130(1), 123–138 (1990)

    Google Scholar 

  38. Z. Nehari, Some inequalities in the theory of functions. Trans. Am. Math. Soc. 75, 256–286 (1953)

    Google Scholar 

  39. O. Pekonen, Universal Teichmüller space in geometry and physics, J. Geom. Phys. 15(3), 227–251 (1995)

    Google Scholar 

  40. A. Pfluger, On the Functional \(a_3 - \lambda a_2^2\) in the class \({\mathcal S}\). Complex Var. 10, 83–95 (1988)

    Google Scholar 

  41. C. Pommerenke, Univalent functions, With a chapter on quadratic differentials by Gerd Jensen. Studia Mathematica/Mathematische Lehrbücher, Band XXV (Vandenhoeck & Ruprecht, Göttingen, 1975)

    Google Scholar 

  42. D. Radnell, Schiffer variation in Teichmüller space, determinant line bundles and modular functors. Ph.D. thesis, Rutgers University, New Brunswick, NJ (2003)

    Google Scholar 

  43. D. Radnell, E. Schippers, Quasisymmetric sewing in rigged Teichmller space. Commun. Contemp. Math. 8(4), 481–534 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. D. Radnell, E. Schippers, A complex structure on the set of quasiconformally extendible non-overlapping mappings into a Riemann surface. J. Anal. Math. 108, 277–291 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. D. Radnell, E. Schippers, Fiber structure and local coordinates for the Teichmüller space of a bordered Riemann surface. Conform. Geom. Dyn. 14, 14–34 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. D. Radnell, E. Schippers, The semigroup of rigged annuli and the Teichmüller space of the annulus. J. Lond. Math. Soc. (2) 86(2), 321–342 (2012)

    Google Scholar 

  47. D. Radnell, E. Schippers, W. Staubach, Quasiconformal maps of bordered Riemann surfaces with L 2 Beltrami differentials. J. Anal. Math. (2014, to appear). Part of arXiv:1403.0868

    Google Scholar 

  48. D. Radnell, E. Schippers, W. Staubach, A Hilbert manifold structure on the Weil-Petersson class Teichmüller space of bordered surfaces. Commun. Contemp. Math. 17(4) (2015). https://doi.org/10.1142/S0219199715500169

  49. D. Radnell, E. Schippers, W. Staubach, Dirichlet problem and Sokhotski-Plemelj jump formula on Weil-Petersson class quasidisks. Ann. Acad. Sci. Fenn. Math. 41, 119–127 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. D. Radnell, E. Schippers, W. Staubach, Weil-Petersson class non-overlapping mappings into a Riemann surface. Commun. Contemp. Math. 18(4) (2016). Part of arXiv:1207.0973

    Google Scholar 

  51. D. Radnell, E. Schippers, W. Staubach, Convergence of the Weil-Petersson metric on the Teichmüller space of bordered surfaces. Commun. Contemp. Math. 19 (2017). https://doi.org/10.1142/S0219199716500255. Part of arXiv:1403.0868 (2014)

  52. D. Radnell, E. Schippers, W. Staubach, Quasiconformal Teichmüller theory as an analytical foundation for two dimensional conformal field theory, in Lie Algebras, Vertex Operator Algebras and Related Topics, ed. by K. Barron, E. Jurisich, A. Milas, K. Misra. Contemporary Mathematics, vol. 695 (American Mathematical Society, Providence, 2017)

    Google Scholar 

  53. D. Radnell, E. Schippers, W. Staubach, Dirichlet spaces of domains bounded by quasicircles. Preprint (2017). arXiv:1705.01279v1

    Google Scholar 

  54. K. Reimer, E. Schippers, Grunsky inequalities for mappings into a compact Riemann surface. Compl. Anal. Oper. Theory 9(8), 1663–1679 (2015)

    Article  MATH  Google Scholar 

  55. A. Schaeffer, D. Spencer, Coefficient Regions for Schlicht Functions. American Mathematical Society Colloquium Publications, vol. 35 (American Mathematical Society, New York, 1950)

    Google Scholar 

  56. M.M. Schiffer, The kernel function of an orthonormal system. Duke Math. J. 13, 529–540 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  57. M.M. Schiffer, Fredholm eigenvalues and conformal mappings. Rend. Mat. Appl. (5) 22, 447–468 (1963)

    Google Scholar 

  58. M.M. Schiffer, Fredholm eigenvalues and Grunsky matrices. Ann. Polon. Math. 39, 149–164 (1981)

    Article  MathSciNet  Google Scholar 

  59. M.M. Schiffer, Menahem Max Schiffer: Selected Papers, ed. by P. Duren, L. Zalcman, vol. 1. Contemporary Mathematicians (Birkhäuser/Springer, New York, 2013)

    Google Scholar 

  60. M.M. Schiffer, Menahem Max Schiffer: Selected Papers. Contemporary Mathematicians, vol. 2, ed. by P. Duren, L. Zalcman (Birkhuser/Springer, New York, 2014)

    Google Scholar 

  61. M.M. Schiffer, D. Spencer, Functionals of Finite Riemann Surfaces (Princeton University Press, Princeton, NJ, 1954)

    MATH  Google Scholar 

  62. E. Schippers, Conformal invariants and higher-order Schwarz lemmas. J. Anal. Math. 90, 217–241 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  63. E. Schippers, Conformal invariants corresponding to pairs of domains, in Future Trends in Geometric Function Theory, Reports, University of Jyväskylä. Department of Mathematics and Statistics, vol. 92 (University of Jyväskylä, Jyväskylä, 2003), pp. 207–219

    Google Scholar 

  64. E. Schippers, The power matrix, coadjoint action and quadratic differentials. J. Anal. Math. 98, 249–277 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  65. E. Schippers, The derivative of the Nehari functional. Ann. Acad. Sci. Fenn. 35(1), 291–307 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  66. E. Schippers, Quadratic differentials and conformal invariants. J. Anal. 24, 209–228 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  67. E. Schippers, Conformal invariants corresponding to quadratic differentials. Isr. J. Math. (to appear)

    Google Scholar 

  68. H.G. Schmidt, Some examples of the method of quadratic differentials in the theory of univalent functions. Matematisk Institut, Aarhus Universitet, Preprint No. 35 (1970)

    Google Scholar 

  69. M.E. Schonbek, A.N. Todorov, J.P. Zubelli, Geodesic flows on diffeomorphisms of the circle, Grassmannians, and the geometry of the periodic KdV equation. (English summary) Adv. Theor. Math. Phys. 3(4), 1027–1092 (1999)

    Google Scholar 

  70. Y. Shen, On Grunsky operator, Sci. China Ser. A 50(12), 1805–1817 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  71. Y. Shen, Weil-Petersson Teichmüller space. Preprint (2013). arXiv:1304.3197

    Google Scholar 

  72. L. Takhtajan, L.-P. Teo, Weil-Petersson metric on the universal Teichmüller space. Mem. Am. Math. Soc. 183(861), i–vii, 1–119 + front and back matter (2006)

    Google Scholar 

  73. O. Tammi, Extremum Problems for Bounded Univalent Functions. I. Lecture Notes in Mathematics, vol. 646 (Springer, Berlin-New York, 1978)

    Google Scholar 

  74. O. Tammi, Extremum Problems for Bounded Univalent Functions. II. Lecture Notes in Mathematics, vol. 913 (Springer, Berlin-New York, 1982)

    Google Scholar 

  75. S. Tang, Some characterizations of the integrable Teichmüller space. Sci. China Math. 56(3), 541–551 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  76. O. Teichmüller, Ungleichungen zwischen den Koeffizienten schlichter Funktionen, in Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-Mathematische Klasse (1938), pp. 363–375 Stzgsber. preuss. Akad. Wiss. Math.-Naturwiss. Kl. (1938), pp. 363–375

    Google Scholar 

  77. A. Vasil’ev, Moduli of Families of Curves for Conformal and Quasiconformal Mappings. Lecture Notes in Mathematics, vol. 1788 (Springer, Berlin, 2002)

    Google Scholar 

  78. S. Wolpert, Chern forms and the Riemann tensor for the moduli space of curves. Invent. Math. 85(1), 119–145 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  79. M. Yanagishita, Introduction of a complex structure on the p-integrable Teichmüller space. Ann. Acad. Sci. Fenn. Math. 39(2), 947–971 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  80. M. Yanagishita, Kählerity and negativity of Weil-Petersson metric on square integrable Teichmüller space. J. Geom. Anal. 27(3), 1995–2017 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to David Radnell for a fruitful collaboration and valuable discussions through the years, and for his comments and suggestions concerning the initial draft of the manuscript.

Eric Schippers and Wolfgang Staubach are grateful for the financial support from the Wenner-Gren Foundations. Eric Schippers is also partially supported by the National Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Schippers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schippers, E., Staubach, W. (2018). Comparison Moduli Spaces of Riemann Surfaces. In: Agranovsky, M., Golberg, A., Jacobzon, F., Shoikhet, D., Zalcman, L. (eds) Complex Analysis and Dynamical Systems. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-70154-7_13

Download citation

Publish with us

Policies and ethics