Skip to main content

On Polynomially Integrable Domains in Euclidean Spaces

  • Chapter
  • First Online:
Complex Analysis and Dynamical Systems

Part of the book series: Trends in Mathematics ((TM))

Abstract

Let D be a bounded domain in \(\mathbb R^n,\) with smooth boundary. Denote \(V_D(\omega ,t), \ \omega \in S^{n-1}, t \in \mathbb R,\) the Radon transform of the characteristic function χ D of the domain D, i.e., the (n − 1)-dimensional volume of the intersection D with the hyperplane \(\{x \in \mathbb R^n: <\omega ,x>=t \}.\) If the domain D is an ellipsoid, then the function V D is algebraic and if, in addition, the dimension n is odd, then V (ω, t) is a polynomial with respect to t. Whether odd-dimensional ellipsoids are the only bounded smooth domains with such a property? The article is devoted to partial verification and discussion of this question.

To the memory of Alexander Vasiliev

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.I. Arnold, V.A. Vassiliev, Newton’s Principia read 300 years later. Not. Am. Math. Soc. 36(9), 1148–1154 (1989)

    MathSciNet  MATH  Google Scholar 

  2. V.I. Arnold, V.A. Vassiliev, Addendum to [3]. Not. Am. Math. Soc. 37(1), 144

    Google Scholar 

  3. M.Atiyah, R. Bott, The moment map and equivariant cohomologies. Topology 23, 1–28 (1964)

    Article  MATH  Google Scholar 

  4. J. Bernard, Finite stationary phase expansions. Asian J. Math. 9(2), 187–198 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. J.J. Duistermatt, G.J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space. Invent. Math. 69, 259–268 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. I.M. Gelfand, M.I. Graev, N.Ya. Vilenkin, Generalized Functions, Volume 5: Integral Geometry and Representation Theory, vol. 381 (AMS Chelsea Publishing, Providence, RI, 1966), p. 449

    Google Scholar 

  7. S. Helgason, Groups and Geometric Analysis (Academic, Cambridge, MA, 1984)

    MATH  Google Scholar 

  8. A. Koldobsky, A. Merkurjev, V. Yaskin, On polynomially integrable convex bodies. Preprint, https://arxiv.org/pdf/1702.00429.pdf

  9. I. Newton, Philosophiae Naturalis Principia Mathematica (Benjamin Motte, London, 1687)

    Book  MATH  Google Scholar 

  10. V.A. Vassiliev, Newton’s lemma XXVIII on integrable ovals in higher dimensions and reflection groups. Bull. Lond. Math. Soc. 47(2), 290–300 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wikipedia, Newton’s theorem about ovals, https://en.wikipedia.org/wiki/Newton's_theorem_about_ovals

  12. R. Wong, Asymptotic Approximations of Integrals (Academic, Cambridge, MA, 1989)

    MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to Mikhail Zaidenberg for drawing my attention to the subject of this article and stimulating initial discussions.

Remark After the Submission After this article was submitted, Koldobsky, Merkurjev and Yaskin proved [8] that polynomially integrable infinitely smooth domains in odd-dimensional spaces are ellipsoids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Agranovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agranovsky, M. (2018). On Polynomially Integrable Domains in Euclidean Spaces. In: Agranovsky, M., Golberg, A., Jacobzon, F., Shoikhet, D., Zalcman, L. (eds) Complex Analysis and Dynamical Systems. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-70154-7_1

Download citation

Publish with us

Policies and ethics