Skip to main content

Exploiting Non-visible Relationship in Link Prediction Based on Asymmetric Local Random Walk

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10638))

Included in the following conference series:

Abstract

Link prediction is an important aspect of complex network evolution analysis. In the existing link prediction algorithms, the sparseness and scale of the target network have a great influence on the prediction results, and the link prediction algorithm based on local random walk is better in solving this problem. However, the existing local random walk link prediction algorithm simplifiy the definition of random walk process between nodes as symmetrical relationship, and ignore the influence of non-visible factors on the relationship of information diffusion between nodes. In this paper, for the first time, we introduce asymmetry and non-visible relationship of the network to the link prediction problem. Exploiting the unequal diffusion weights in different directions resulted from different degrees, we propose an asymmetric local random walk (ALRW) algorithm. In addition, with non-visible relationship to calculate of the similarity index, we propose a grounded asymmetric local random walk (GALRW) algorithm on the basis of ALRW. Compared with existing advanced link prediction algorithms, thorough experiments on typical datasets show that GALRW achieves better performance in prediction accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Guimerà, R., Salespardo, M.: Missing and spurious interactions and the reconstruction of complex networks. In: Proceedings of the National Academy of Sciences of the United States of America. vol. 106, no. 52, pp. 22073–22078 (2010)

    Google Scholar 

  2. Zeng, A., Cimini, G.: Removing spurious interactions in complex networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 85(3 Pt 2), 036101 (2012)

    Article  Google Scholar 

  3. Neuman, M.E.J.: The structure and function of complex networks. Siam Rev. 45(1–2), 40–45 (2003)

    MathSciNet  Google Scholar 

  4. Getoor, L., Diehl, C.P.: Link mining: a survey. ACM SIGKDD Explor. Newsl. 7(2), 3–12 (2005)

    Article  Google Scholar 

  5. Lü, L.Y., Zhou, T.: Link prediction in complex networks: a survey. Physica A Stat. Mech. Appl. 390(6), 1150–1170 (2010)

    Article  Google Scholar 

  6. Liu, J.H., Zhu, Y.X., Zhou, T.: Improving personalized link prediction by hybrid diffusion. Physica A Stat. Mech. Appl. 447, 199–207 (2015)

    Article  Google Scholar 

  7. Kossinets, G.: Effects of missing data in social networks. Soc. Netw. 28, 247–268 (2006)

    Article  Google Scholar 

  8. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25, 211–230 (2003)

    Article  Google Scholar 

  9. Zhou, T., Lü, L., Zhang, Y.C.: Predicting missing links via local information. Eur. Phys. J. B 71(4), 623–630 (2009)

    Article  MATH  Google Scholar 

  10. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. MuGraw-Hill, Auckland (1983)

    MATH  Google Scholar 

  11. Jaccard, P.: Etude comparative de la distribution florale dans une portio n des alpes et des jura. Bull. Soc. Vaudoise Sci. Nat. 37, 547–579 (1901)

    Google Scholar 

  12. Lü, L., Jin, C.H., Zhou, T.: Similarity index based on local paths for link prediction of complex networks. Phys. Rev. E 80, 046122 (2009)

    Article  Google Scholar 

  13. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)

    Article  MATH  Google Scholar 

  14. Leicht, E.A., Holme, P., Newman, M.E.: Vertex similarity in networks. Phys. Rev. E 73, 026120 (2006)

    Article  Google Scholar 

  15. Klein, D.J., Randic, M.: Resistance distance. J. Math. Chem. 12(1), 81–95 (1993)

    Article  MathSciNet  Google Scholar 

  16. Fouss, F., Pirotte, A., Renders, J.M., et al.: Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans. Knowl. Data Eng. 19(3), 355–369 (2007)

    Article  Google Scholar 

  17. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998)

    Article  Google Scholar 

  18. Jeh, G., Widom, J.: SimRank: a measure of structuralcontext similarity. In: Proceedings of the ACM SIGKDD 2002, pp. 538–543, ACM Press, New York (2002)

    Google Scholar 

  19. Liu, W., Lu, L.: Link prediction based on local random walk. EPL. 89(5), 58007–58012(6) (2010)

    Google Scholar 

  20. Hanely, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982)

    Article  Google Scholar 

  21. Herlocker, J.L., Konstann, J.A., Terveen, K., et al.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, C., Li, D., Teng, Y., Fan, D., Ding, G. (2017). Exploiting Non-visible Relationship in Link Prediction Based on Asymmetric Local Random Walk. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10638. Springer, Cham. https://doi.org/10.1007/978-3-319-70139-4_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70139-4_74

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70138-7

  • Online ISBN: 978-3-319-70139-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics