Skip to main content

Dynamic Cyclone Wind-Intensity Prediction Using Co-Evolutionary Multi-task Learning

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10638))

Included in the following conference series:

Abstract

A new category called dynamic time series prediction is introduced to address robust “on the fly” prediction needed in events such as natural disasters. A co-evolutionary multi-task learning algorithm is presented which incorporates features from modular and multi-task learning. The algorithm is used for prediction of tropical cyclone wind-intensity. This addresses the need for a robust and dynamic prediction model during the occurrence of a cyclone. The results show that the method addresses dynamic time series effectively when compared to conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    https://github.com/rohitash-chandra/CMTL_dynamictimeseries.

References

  1. Ali, M.M., Jagadeesh, P.S.V., Lin, I.I., Hsu, J.Y.: A neural network approach to estimate tropical cyclone heat potential in the Indian ocean. IEEE Geosci. Remote Sens. Lett. 9(6), 1114–1117 (2012)

    Article  Google Scholar 

  2. Angeline, P., Saunders, G., Pollack, J.: An evolutionary algorithm that constructs recurrent neural networks. IEEE Trans. Neural Netw. 5(1), 54–65 (1994)

    Article  Google Scholar 

  3. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)

    Article  MathSciNet  Google Scholar 

  4. Chandra, R.: Competition and collaboration in cooperative coevolution of Elman recurrent neural networks for time-series prediction. IEEE Trans. Neural Netw. Learn. Syst. 26, 3123–3136 (2015)

    Article  MathSciNet  Google Scholar 

  5. Chandra, R., Frean, M., Zhang, M.: On the issue of separability for problem decomposition in cooperative neuro-evolution. Neurocomputing 87, 33–40 (2012)

    Article  Google Scholar 

  6. Chandra, R., Gupta, A., Ong, Y.-S., Goh, C.-K.: Evolutionary multi-task learning for modular training of feedforward neural networks. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9948, pp. 37–46. Springer, Cham (2016). doi:10.1007/978-3-319-46672-9_5

    Chapter  Google Scholar 

  7. Chandra, R., Zhang, M.: Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction. Neurocomputing 186, 116–123 (2012)

    Article  Google Scholar 

  8. Clune, J., Mouret, J.B., Lipson, H.: The evolutionary origins of modularity. In: Proceedings of the Royal Society of London B: Biological Sciences, vol. 280, no. 1755 (2013)

    Google Scholar 

  9. Deo, R., Chandra, R.: Identification of minimal timespan problem for recurrent neural networks with application to cyclone wind-intensity prediction. In: International Joint Conference on Neural Networks (IJCNN), pp. 489–496, July 2016

    Google Scholar 

  10. Evgeniou, T., Micchelli, C.A., Pontil, M.: Learning multiple tasks with kernel methods. J. Mach. Learn. Res. 6(Apr), 615–637 (2005)

    Google Scholar 

  11. Frazier, C., Kockelman, K.: Chaos theory and transportation systems: instructive example. Transp. Res. Rec.: J. Transp. Res. Board 20, 9–17 (2004)

    Article  Google Scholar 

  12. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1–18 (2003)

    Article  Google Scholar 

  13. Happel, B.L., Murre, J.M.: Design and evolution of modular neural network architectures. Neural Netw. 7(6–7), 985–1004 (1994)

    Article  Google Scholar 

  14. JTWC: Joint Typhoon Warning Center - tropical cyclone best track data site. http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/ (2017). Accessed 16 Aug 2017

  15. Knaff, J.A., DeMaria, M., Sampson, C.R., Gross, J.M.: Statistical, five-day tropical cyclone intensity forecasts derived from climatology and persistence. Weather Forecast. 18, 80–92 (2003)

    Article  Google Scholar 

  16. Misra, J., Saha, I.: Artificial neural networks in hardware: a survey of two decades of progress. Neurocomputing 74(1–3), 239–255 (2010). Artificial Brains

    Google Scholar 

  17. Morse, A.F., De Greeff, J., Belpeame, T., Cangelosi, A.: Epigenetic robotics architecture (ERA). IEEE Trans. Auton. Mental Dev. 2(4), 325–339 (2010)

    Article  Google Scholar 

  18. Potter, M.A., De Jong, K.A.: Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol. Comput. 8(1), 1–29 (2000)

    Article  Google Scholar 

  19. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994). doi:10.1007/3-540-58484-6_269

    Chapter  Google Scholar 

  20. Prince, C., Helder, N., Hollich, G.: Ongoing emergence: a core concept in epigenetic robotics. In: Proceedings of the Fifth International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, pp. 63–70. Lund University Cognitive Studies (2005)

    Google Scholar 

  21. Stiles, B.W., Danielson, R.E., Poulsen, W.L., Brennan, M.J., Hristova-Veleva, S., Shen, T.P., Fore, A.G.: Optimized tropical cyclone winds from QuikSCAT: a neural network approach. IEEE Trans. Geosci. Remote Sens. 52(11), 7418–7434 (2014)

    Article  Google Scholar 

  22. Takens, F.: Detecting strange attractors in turbulence. In: Rand, D., Young, L.-S. (eds.) Dynamical Systems and Turbulence, Warwick 1980. LNM, vol. 898, pp. 366–381. Springer, Heidelberg (1981). doi:10.1007/BFb0091924

    Chapter  Google Scholar 

  23. Zeng, T., Ji, S.: Deep convolutional neural networks for multi-instance multi-task learning. In: 2015 IEEE International Conference on Data Mining (ICDM), pp. 579–588, November 2015

    Google Scholar 

  24. Zheng, H., Geng, X., Tao, D., Jin, Z.: A multi-task model for simultaneous face identification and facial expression recognition. Neurocomputing 171, 515–523 (2016)

    Article  Google Scholar 

  25. Zjavka, L.: Numerical weather prediction revisions using the locally trained differential polynomial network. Expert Syst. Appl. 44, 265–274 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohitash Chandra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chandra, R. (2017). Dynamic Cyclone Wind-Intensity Prediction Using Co-Evolutionary Multi-task Learning. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10638. Springer, Cham. https://doi.org/10.1007/978-3-319-70139-4_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70139-4_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70138-7

  • Online ISBN: 978-3-319-70139-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics