Skip to main content

Fix-Budget and Recurrent Data Mining forĀ Online Haptic Perception

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10638))

Included in the following conference series:

Abstract

Haptic perception is to identify different targets from haptic input. Haptic data have two prominent features: sequentially real-time and temporally correlated, which calls for a fixed-budget and recurrent perception procedure. Based on an efficient-robust spatio-temporal feature representation, we handle the problem with a bounded online-sequential learning framework (MBS-ESN), and incorporates the strength of batch-regularization bootstrapping, bounded recursive reservoir, and momentum-based estimation. Experimental evaluations show that it outperforms the state-of-the-art methods by a large margin on test accuracy; and its training performance is superior to most compared models from aspects of computational complexity and storage efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Atiya, A.F., Parlos, A.G.: New results on recurrent network training: unifying the algorithms and accelerating convergence. IEEE Trans. Neural Netw. 11(3), 697ā€“709 (2000)

    ArticleĀ  Google ScholarĀ 

  2. Bekiroglu, Y., Kragic, D., Kyrki, V.: Learning grasp stability based on tactile data and HMMs. In: Proceedings of 19th International Conference on RO-MAN, pp. 132ā€“137. IEEE, Viareggio (2010)

    Google ScholarĀ 

  3. Bekiroglu, Y., Laaksonen, J., Jorgensen, J.A., Kyrki, V., Kragic, D.: Assessing grasp stability based on learning and haptic data. IEEE Trans. Robot. 27(3), 616ā€“629 (2011)

    ArticleĀ  Google ScholarĀ 

  4. Cao, L., Kotagiri, R., Sun, F., Li, H., Huang, W., Aye, Z.M.M.: Efficient spatio-temporal tactile object recognition with randomized tiling convolutional networks in a hierarchical fusion strategy. In: Proceedings of 30th AAAI, pp. 3337ā€“3345. AAAI Press, Phoenix (2016)

    Google ScholarĀ 

  5. Chong, E.K., Zak, S.H.: An Introduction to Optimization, vol. 76. Wiley, Hoboken (2013)

    MATHĀ  Google ScholarĀ 

  6. CsatĆ³, L., Opper, M.: Sparse on-line Gaussian processes. Neural Comput. 14(3), 641ā€“668 (2002)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  7. Drimus, A., Kootstra, G., Bilberg, A., Kragic, D.: Design of a flexible tactile sensor for classification of rigid and deformable objects. Robot. Auton. Syst. 62(1), 3ā€“15 (2014)

    ArticleĀ  Google ScholarĀ 

  8. Farhang-Boroujeny, B.: Adaptive Filters: Theory and Applications. Wiley, Hoboken (2013)

    BookĀ  MATHĀ  Google ScholarĀ 

  9. Hinton, G.E.: A practical guide to training restricted Boltzmann machines. In: Montavon, G., Orr, G.B., MĆ¼ller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, 2nd edn, pp. 599ā€“619. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35289-8_32

    ChapterĀ  Google ScholarĀ 

  10. Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55ā€“67 (1970)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  11. Horn, B.K., Schunck, B.G.: Determining optical flow. Artif. Intell. 17, 185ā€“203 (1981)

    ArticleĀ  Google ScholarĀ 

  12. Jaeger, H.: Adaptive nonlinear system identification with echo state networks. In: Advances in Neural Information Processing Systems, pp. 593ā€“600 (2002)

    Google ScholarĀ 

  13. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78ā€“80 (2004)

    ArticleĀ  Google ScholarĀ 

  14. Kountouriotis, P., Obradovic, D., Goh, S.L., Mandic, D.P.: Multi-step forecasting using echo state networks. In: International Conference on Computer as a Tool, EUROCON 2005, vol. 2, pp. 1574ā€“1577. IEEE (2005)

    Google ScholarĀ 

  15. Liang, N.Y., Huang, G.B., Saratchandran, P., Sundararajan, N.: A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 17(6), 1411ā€“1423 (2006)

    ArticleĀ  Google ScholarĀ 

  16. LukoÅ”EvičIus, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3(3), 127ā€“149 (2009)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  17. Maass, W., NatschlƤger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531ā€“2560 (2002)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  18. Neal, R.M.: Bayesian Learning for Neural Networks, vol. 118. Springer Science & Business Media, New York (2012). doi:10.1007/978-1-4612-0745-0

    MATHĀ  Google ScholarĀ 

  19. Orabona, F., Castellini, C., Caputo, B., Jie, L., Sandini, G.: On-line independent support vector machines. Pattern Recogn. 43(4), 1402ā€“1412 (2010)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  20. Orabona, F., Keshet, J., Caputo, B.: Bounded kernel-based online learning. J. Mach. Learn. Res. 10, 2643ā€“2666 (2009)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  21. Rao, C.R., Mitra, S.K.: Generalized Inverse of Matrices and Its Applications, vol. 7. Wiley, New York (1971)

    MATHĀ  Google ScholarĀ 

  22. Shi, Z., Han, M.: Support vector echo-state machine for chaotic time-series prediction. IEEE Trans. Neural Netw. 18(2), 359ā€“372 (2007)

    ArticleĀ  Google ScholarĀ 

  23. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems, pp. 568ā€“576 (2014)

    Google ScholarĀ 

  24. Soh, H., Demiris, Y.: Incrementally learning objects by touch: online discriminative and generative models for tactile-based recognition. IEEE Trans. Haptics 7(4), 512 (2014)

    ArticleĀ  Google ScholarĀ 

  25. Soh, H., Su, Y., Demiris, Y.: Online spatio-temporal Gaussian process experts with application to tactile classification. In: Proceedings of 25th IROS, pp. 4489ā€“4496. IEEE/RSJ, Algarve (2012)

    Google ScholarĀ 

  26. Soh, H., Demiris, Y.: Iterative temporal learning and prediction with the sparse online echo state Gaussian process. In: Proceedings of 25th IJCNN, pp. 1ā€“8. IEEE, Brisbane (2012)

    Google ScholarĀ 

  27. Soh, H., Demiris, Y.: Spatio-temporal learning with the online finite and infinite echo-state Gaussian processes. IEEE Trans. Neural Netw. Learn. Syst. 26(3), 522ā€“536 (2015)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  28. Van Vaerenbergh, S., SantamarĆ­a, I., Liu, W., PrĆ­ncipe, J.C.: Fixed-budget kernel recursive least-squares. In: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 1882ā€“1885. IEEE (2010)

    Google ScholarĀ 

  29. Wang, Z., Crammer, K., Vucetic, S.: Breaking the curse of kernelization: budgeted stochastic gradient descent for large-scale SVM training. J. Mach. Learn. Res. 13(1), 3103ā€“3131 (2012)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  30. Yang, J., Liu, H., Sun, F., Gao, M.: Tactile sequence classification using joint kernel sparse coding. In: Proceedings of 28th IJCNN, pp. 1ā€“6. IEEE, Killarney (2015)

    Google ScholarĀ 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China with grant number 041320190.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lele Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, L., Sun, F., Liu, X., Huang, W., Cheng, W., Kotagiri, R. (2017). Fix-Budget and Recurrent Data Mining forĀ Online Haptic Perception. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10638. Springer, Cham. https://doi.org/10.1007/978-3-319-70139-4_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70139-4_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70138-7

  • Online ISBN: 978-3-319-70139-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics