Advertisement

Robust Adaptive Beamforming in Uniform Circular Array

  • Xin SongEmail author
  • Ying Guan
  • Jinkuan Wang
  • Jing Gao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10638)

Abstract

Phase-mode transformation (PMT) is a commonly used technique to convert a uniform circular array (UCA) into a virtual uniform linear array (ULA). This method restores the Vandemonde structure of the steering vector and makes it easy to apply many existing beamforming algorithms to UCA. One such method is the famous Minimum Variance Distortionless Response (MVDR) algorithm, in which the array gain is equal to unity in the direction of arrival of the desired signal. However, due to the approximation errors of the PMT and signal steering vector mismatches, the performance of these algorithms degrades. To address these two issues, in this paper we develop a robust recursive updating algorithm based on worst-case performance optimization. We show that the proposed algorithm belongs to the class of the diagonal loading technique and the transformation matrix belongs to a certain ellipsoid set. Using the Lagrange multiplier method, we have also derived closed-form solution to the weight vector. Our robust algorithm has low implementation complexity and makes the mean output array SINR consistently close to the optimal one. Numerical experiments have shown that our method outperforms the MVDR algorithm.

Keywords

Worst-case performance optimization Steering vector mismatches Robust adaptive beamforming Phase-mode transformation 

References

  1. 1.
    Mohsen, A., Mahmood, K., Zakiyeh, A.: Robust beamforming in circular arrays using phase-mode transformation. IET Sig. Process. 7(8), 693–703 (2013)CrossRefGoogle Scholar
  2. 2.
    Jiang, X., Zeng, W.J., Yasotharan, A., So, H.C., Kirubarajan, T.: Quadratically constrained minimum dispersion beamforming via gradient projection. IEEE Trans. Sig. Process. 63(1), 192–205 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Godara, L.C.: Application of antenna arrays to mobile communication, Part Π: Beam-forming and direction-of-arrival considerations. Proc. IEEE 85(7), 1213–1216 (1997)CrossRefGoogle Scholar
  4. 4.
    Chang, L., Yeh, C.C.: Performance of DMI and eigenspace-based beamformers. IEEE Trans. Antennas Propag. 40(11), 1336–1347 (1992)CrossRefGoogle Scholar
  5. 5.
    Feldman, D.D., Griffiths, L.J.: A projection approach to robust adaptive beamforming. IEEE Trans. Sig. Process. 42(4), 867–876 (1994)CrossRefGoogle Scholar
  6. 6.
    Zou, Q., Yu, Z.L., Lin, Z.A.: Robust algorithm for linearly constrained adaptive beamforming. IEEE Sig. Process. Lett. 11(1), 26–29 (2004)CrossRefGoogle Scholar
  7. 7.
    Kim, S.J., Magnani, A., Mutapcic, A., Boyd, S.P., Luo, Z.Q.: Robust beamforming via worst-case SINR maximization. IEEE Trans. Sig. Process. 56(4), 1539–1547 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hassanien, A., Vorobyov, S.A., Wong, K.M.: Robust adaptive beamforming using sequential programming: an iterative solution to the mismatch problem. IEEE Sig. Process. Lett. 15, 733–736 (2008)CrossRefGoogle Scholar
  9. 9.
    Wax, M., Sheinvald, J.: Direction finding of coherent signals via spatial smoothing for uniform circular arrays. IEEE Trans. Antennas Propag. 42(5), 613–620 (1994)CrossRefGoogle Scholar
  10. 10.
    Vorobyov, S.A., Gershman, A.B., Luo, Z.Q.: Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem. IEEE Trans. Sig. Process. 51(2), 313–324 (2003)CrossRefGoogle Scholar
  11. 11.
    Shahbazpanahi, S., Gershman, A.B., Luo, Z.Q., Wong, K.M.: Robust adaptive beamforming for general-rank signal models. IEEE Trans. Sig. Process. 51(9), 2257–2269 (2003)CrossRefGoogle Scholar
  12. 12.
    Elnashar, A.: Efficient implementation of robust adaptive beamforming based on worst-case performance optimization. IET. Sig. Process. 2(4), 381–393 (2008)CrossRefGoogle Scholar
  13. 13.
    Elnashar, A., Elnoubi, S., Elmikati, H.: Further study on robust adaptive beamforming with optimum diagonal loading. IEEE Trans. Antennas Propag. 54(12), 3647–3658 (2006)CrossRefGoogle Scholar
  14. 14.
    Attallah, S., Abed-Meraim, K.: Fast algorithms for subspace tracking. IEEE Trans. Signal Process. Lett. 8(7), 203–206 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Engineering Optimization and Smart Antenna InstituteNortheastern UniversityQinhuangdaoChina
  2. 2.School of Computer Science and EngineeringNortheastern UniversityShenyangChina

Personalised recommendations