Advertisement

A Hybrid Approach for Recovering Information Propagational Direction

  • Xiang-Rui Peng
  • Ling Huang
  • Chang-Dong WangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10638)

Abstract

With the rapid development of network technology, people are communicating with each other through a variety of network access, such as computer, mobile phone, tablet, etc., for the sharing of information and interactive behavior. The flow of information is directional, but this directionality is usually hidden. In recent years, link prediction technology has been developed very rapidly in social network analysis. The active and passive of the relationship, in social network, could be identified via undirected relationship network structure. However, this approach only focuses on the topological structure while ignoring the information shared between individuals, which is not suitable for study in terms of information propagation. To solve this problem, we propose a hybrid approach termed DRHM to recover the information sharing direction in networks. It combines not only topology structure but also node content. Since the algorithm is based on edge structure, it is equally applicable to large-scale data set. The experiment has demonstrated that our algorithm performs well in information propagational network.

Keywords

Information propagation Direction prediction Hybrid 

Notes

Acknowledgment

This work was supported by NSFC (No. 61502543) and Tip-top Scientific and Technical Innovative Youth Talents of Guangdong special support program (No. 2016TQ03X542).

References

  1. 1.
    Li, J.H., Li, P.Z., Wang, C.D., Lai, J.H.: Community detection in complicated network based on the multi-view weighted signed permanence. In: 14th IEEE International Symposium on Parallel and Distributed Processing with Applications, pp. 1589–1596. IEEE Press, New York (2016)Google Scholar
  2. 2.
    Ding, Y., Huang, L., Wang, C.-D., Huang, D.: Community detection in graph streams by pruning zombie nodes. In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-S. (eds.) PAKDD 2017 Part I. LNCS (LNAI), vol. 10234, pp. 574–585. Springer, Cham (2017). doi: 10.1007/978-3-319-57454-7_45 CrossRefGoogle Scholar
  3. 3.
    Wang, C.D., Lai, J.H., Yu, P.S.: Dynamic community detection in weighted graph streams. In: 13th SIAM International Conference on Data Mining, pp. 151–161. SIAM, Philadelphia (2013)Google Scholar
  4. 4.
    Wang, C.D., Lai, J.H., Yu, P.S.: NEIWalk: community discovery in dynamic content-based networks. IEEE Trans. Knowl. Data Eng. 26, 1734–1748 (2013)CrossRefGoogle Scholar
  5. 5.
    Luhn, H.P.: The automatic creation of literature abstracts. IBM J. Res. Dev. 2, 159–165 (1958)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Robertson, S.E., Jones, K.S.: Relevance weighting of search terms. J. Am. Soc. Inf. Sci. 27, 129–146 (1976)CrossRefGoogle Scholar
  7. 7.
    Zhang, J., Wang, C.K., Wang, J.M., Yu, J.X., Chen, J., Wang, C.P.: Inferring directions of undirected social ties. IEEE Trans. Knowl. Data Eng. 28, 3276–3292 (2016)CrossRefGoogle Scholar
  8. 8.
    Liu, L.Y., Xu, L.L., Wang, Z., Chen, E.H.: Community detection based on structure and content: a content propagation perspective. In: 15th IEEE International Conference on Data Mining, pp. 271–280. IEEE Press, New York (2015)Google Scholar
  9. 9.
    Deng, Z.H., Wang, Z.H., Zhang, J.: ROBIN: a novel personal recommendation model based on information propagation. Expert Syst. Appl. 40, 5306–5313 (2013)CrossRefGoogle Scholar
  10. 10.
    Velden, T., Yan, S.Y., Lagoze, C.: Mapping the cognitive structure of astrophysics by infomap clustering of the citation network and topic affinity analysis. Scientometrics 111, 1033–1051 (2017)CrossRefGoogle Scholar
  11. 11.
    Leskovec, J., Huttenlocher, D.P., Kleinberg, J.M.: Predicting positive and negative links in online social networks. In: 19th International Conference on World Wide Web, pp. 641–650. ACM, New York (2010)Google Scholar
  12. 12.
    Kahanda, I., Neville, J.: Using transactional information to predict link strength in online social networks. In: 3th International Conference on Weblogs and Social Media, pp. 74–81. AAAI, Palo Alto (2009)Google Scholar
  13. 13.
    Granovetter, M.S.: The strength of weak ties. Am. J. Sociol. 78, 1360–1380 (1973)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Xiang-Rui Peng
    • 1
    • 2
  • Ling Huang
    • 1
    • 2
  • Chang-Dong Wang
    • 1
    • 2
    Email author
  1. 1.School of Data and Computer ScienceSun Yat-sen UniversityGuangzhouChina
  2. 2.Guangdong Key Laboratory of Information Security TechnologyGuangzhouChina

Personalised recommendations