A Tag-Based Integrated Diffusion Model for Personalized Location Recommendation

  • Yaolin Zheng
  • Yulong Wang
  • Lei Zhang
  • Jingyu Wang
  • Qi Qi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10638)


The location based services have attracted millions of users to share their locations via check-ins. It is highly important to recommend personalized POIs (Points-Of-Interest) to users in terms of their preference learned from historical data. In current research work, users’ check-in behavior is wildly used to model user’s preference. However, the sparsity of the check-in data makes it difficult to capture users’ preferences accurately. This paper proposes a tag-based integrated diffusion recommender system for location recommendation, considering not only social influence but also venue features. Firstly, we model user location preference by combining the preference extracted from check-ins data and short text tips, where sentiment analysis techniques are used. Furthermore, we collect venue information by merging descriptions and tips and then generate tags of each venue, which are processed using keyword extraction approaches. Then we apply the recommendation algorithm with user’s initial preference and obtain the final integrate diffusion results for each user, recommending top-N venues by descending order. We conduct experiments on Foursquare datasets of two cities, the results on both datasets show that our recommender system can produce better performance, providing more personalized and higher novel recommendations.


Location recommendation Sentiment analysis Diffusion Keyword extraction Tag 



This work was jointly funded by: (1) National Natural Science Foundation of China (Nos. 61421061, 61372120, 61671079, 61471063); (2) Beijing Municipal Natural Science Foundation (No. 4152039).


  1. 1.
    Ye, M., Yin, P., Lee, W.C., Lee, D.L.: Exploiting geographical influence for collaborative point-of-interest recommendation. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 325–334. ACM (2011)Google Scholar
  2. 2.
    Noulas, A., Scellato, S., Lathia, N., Mascolo, C.: A random walk around the city: new venue recommendation in location-based social networks. In: ASE/IEEE International Conference on Social Computing & ASE/IEEE International Conference on Privacy, Security, Risk and Trust, pp. 144–153 (2012)Google Scholar
  3. 3.
    Wang, H., Terrovitis, M., Mamoulis, N.: Location recommendation in location-based social networks using user check-in data. In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 374–383. ACM (2013)Google Scholar
  4. 4.
    Vig, J., Sen, S., Riedl, J.: Tagsplanations: explaining recommendations using tags. In: Proceedings of the 14th International Conference on Intelligent User Interfaces. ACM (2009)Google Scholar
  5. 5.
    Parra, D., Brusilovsky, P.: Collaborative filtering for social tagging systems: an experiment with CiteULike. In: Proceedings of the third ACM Conference on Recommender Systems, pp. 237–240. ACM (2009)Google Scholar
  6. 6.
    Zhou, T., Ren, J., Medo, M., Zhang, Y.C.: Bipartite network projection and personal recommendation. Phys. Rev. E 76 (2007)Google Scholar
  7. 7.
    Hotho, A., Jäschkz, R., Schmitz, C., Stumme, G.: FolkRank: a ranking algorithm for folksonomies. In: LWA, vol. 1, pp. 111–114 (2006)Google Scholar
  8. 8.
    Zhang, Z.K., Zhou, T., Zhang, Y.C.: Personalized recommendation via integrated diffusion on user–item–tag tripartite graphs. Phys. A 389, 179–186 (2010)CrossRefGoogle Scholar
  9. 9.
    Wetzker, R., Umbrath, W., Said, A.: A hybrid approach to item recommendation in folksonomies. In: Proceedings of the WSDM 2009 Workshop on Exploiting Semantic Annotations in Information Retrieval, pp. 25–29. ACM (2009)Google Scholar
  10. 10.
    Rendle, S., Marinho, L.B., Nanopoulos, A., et al.: Learning optimal ranking with tensor factorization for tag recommendation. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 727–736. ACM (2009)Google Scholar
  11. 11.
    Yuan, Q., Cong, G., Ma, Z., et al.: Time-aware point-of-interest recommendation. In: Proceedings of the 36th international ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 363–372. ACM (2013)Google Scholar
  12. 12.
    Cheng, C., Yang, H., King, I., Lyu, M.R.: Fused matrix factorization with geographical and social influence in location-based social networks. In: AAAI Conference on Artificial Intelligence (2012)Google Scholar
  13. 13.
    Yang, D., Zhang, D., Yu, Z., et al.: A sentiment-enhanced personalized location recommendation system. In: ACM Conference on Hypertext & Social Media, pp. 119–128. ACM (2013)Google Scholar
  14. 14.
    Ye, M., Yin, P., Lee, W.C.: Location recommendation for location-based social networks. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 458–461. ACM (2010)Google Scholar
  15. 15.
    Zhang, J.D., Chow, C.Y.: Point-of-interest recommendations in location-based social networks. SIGSPATIAL Spec. 7(3), 26–33 (2016). ACMCrossRefGoogle Scholar
  16. 16.
    Cheng, C., Yang, H., King, I., Lyu, M.R.: A unified point-of-interest recommendation framework in location-based social networks. ACM Trans. Intell. Syst. Technol. 8(1) (2016). ACMGoogle Scholar
  17. 17.
    Fang, Q., Xu, C., Hossain, M.S., Muhammad, G.: STCAPLRS: a spatial-temporal context-aware personalized location recommendation system. ACM Trans. Intell. Syst. Technol. 7(4) (2016). ACMGoogle Scholar
  18. 18.
    Liu, B.: Opinion mining and sentiment analysis. In: Liu, B. (ed.) Web Data Mining. Data-Centric Systems and Applications, pp. 459–526. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-19460-3_11 Google Scholar
  19. 19.
    Bifet, A., Frank, E.: Sentiment knowledge discovery in Twitter streaming data. In: Pfahringer, B., Holmes, G., Hoffmann, A. (eds.) DS 2010. LNCS, vol. 6332, pp. 1–15. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-16184-1_1 CrossRefGoogle Scholar
  20. 20.
    Thelwall, M., Buckley, K., Paltoglou, G.: Sentiment in Twitter events. J. Am. Soc. Inf. Sci. Technol. (2011). DBLPGoogle Scholar
  21. 21.
    You, Q.: Sentiment and emotion analysis for social multimedia: methodologies and applications. In: Proceedings of the 2016 ACM on Multimedia Conference, pp. 1445–1449. ACM (2016)Google Scholar
  22. 22.
    Pontes, T., Vasconcelos, M., Almeida, J., Kumaraguru, P., Almeida, V.: We know where you live: privacy characterization of foursquare behavior. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 898–905. ACM (2012)Google Scholar
  23. 23.
    Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An Introduction. Cambridge University Press, New York (2010)CrossRefGoogle Scholar
  24. 24.
    Ricci, F., Rokach, L., Shapira, B., et al.: Recommender Systems Handbook. Springer, Boston (2011). doi: 10.1007/978-0-387-85820-3 CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yaolin Zheng
    • 1
    • 2
  • Yulong Wang
    • 1
    • 2
  • Lei Zhang
    • 1
    • 2
  • Jingyu Wang
    • 1
    • 2
  • Qi Qi
    • 1
    • 2
  1. 1.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingPeople’s Republic of China
  2. 2.EBUPT Information Technology Co., Ltd.BeijingPeople’s Republic of China

Personalised recommendations