Advertisement

Periodic Associated Sensor Patterns Mining from Wireless Sensor Networks

  • Md. Mamunur RashidEmail author
  • Joarder Kamruzzaman
  • Iqbal Gondal
  • Rafiul Hassan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10638)

Abstract

Mining interesting knowledge from the massive amount of data gathered in wireless sensor networks is a challenging task. Works reported in literature all-confidence measure based associated sensor patterns can captures association-like co-occurrences and the strong temporal correlations implied by such co-occurrences in the sensor data. However, when the user given all-confidence threshold is low, a huge amount of patterns are generated and mining these patterns may not be space and time efficient. Temporal periodicity of pattern appearance can be regarded as an important criterion for measuring the interestingness of associated patterns in WSNs. Associated sensor patterns that occur after regular intervals is called periodic associated sensor patterns. Even though mining periodic associated sensor patterns from sensor data stream is extremely important in many real-time applications, no such algorithm has been proposed yet. In this paper, we propose a compact tree structure called Periodic Associated Sensor Pattern-tree (PASP-tree) and an efficient mining approach for finding periodic associated sensor patterns (PASPs) from WSNs. Extensive performance analyses show that our technique is time and memory efficient in finding periodic associated sensor patterns.

Keywords

Wireless sensor networks Data mining Periodicity Knowledge discovery Associated sensor pattern 

References

  1. 1.
    Mahmood, A., Shi, K., Khatoon, S., Xiao, M.: Data mining techniques for wireless sensor networks: a survey. Int. J. Distrib. Sens. Netw. 2013 (2013). doi: 10.1155/2013/406316
  2. 2.
    Tan, P.-N.: Knowledge discovery from sensor data. Sensors 23, 14–19 (2006)Google Scholar
  3. 3.
    Loo, K.K., Tong, I., Kao, B.: Online algorithms for mining inter-stream associations from large sensor networks. In: Ho, T.B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS, vol. 3518, pp. 143–149. Springer, Heidelberg (2005). doi: 10.1007/11430919_18 CrossRefGoogle Scholar
  4. 4.
    Romer, K.: Distributed mining of spatio-temporal event patterns in sensor networks. In: EAWMS/DCOSS, pp. 103–116 (2006)Google Scholar
  5. 5.
    Boukerche, A., Samarah, S.A.: Novel algorithm for mining association rules in wireless ad-hoc sensor networks. IEEE Trans. P & D. Syst. 865–877 (2008)Google Scholar
  6. 6.
    Rashid, M.M., Gondal, I.: Mining associated patterns from wireless sensor networks. IEEE Trans. Comput. 45, 638–651 (2016)zbMATHGoogle Scholar
  7. 7.
    Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S., Lee, Y.-K.: Discovering periodic-frequent patterns in transactional databases. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 242–253. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-01307-2_24 CrossRefGoogle Scholar
  8. 8.
    Rashid, M.M., Gondal, I., Kamruzzaman, J.: Regularly frequent patterns mining from sensor data stream. In: Lee, M., Hirose, A., Hou, Z.-G., Kil, R.M. (eds.) ICONIP 2013. LNCS, vol. 8227, pp. 417–424. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-42042-9_52 CrossRefGoogle Scholar
  9. 9.
    Han, J., Pei, J., Yin, Y.: Mining frequent pattern without candidate generation. In: ACM SIGMOD International Conference on Management of Data, pp. 1–12 (2000)Google Scholar
  10. 10.
    Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S.: Efficient single-pass frequent pattern mining using a prefix-tree. Inf. Sci. 179(5), 559–583 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Frequent itemset mining repository. http://fimi.cs.helsinki.fi/data/. Accessed 20 Mar 2017
  12. 12.
    Intel Lab data. http://db.csail.mit.edu/labdata/labdata.html. Accessed 20 Mar 2017
  13. 13.
    Haider, A., Gondal, I., Kamruzzaman, J.: Dynamic dwell timer for hybrid vertical handover in 4G coupled networks. In: VTC Spring, pp. 1–5 (2011)Google Scholar
  14. 14.
    Hassan, R., Ramamohanarao, K., Kamruzzaman, J., Rahman, M., Hossain, M.: A HMM-based adaptive fuzzy inference system for stock market forecasting. Neurocomputing 104, 10–25 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Md. Mamunur Rashid
    • 1
    Email author
  • Joarder Kamruzzaman
    • 1
    • 2
  • Iqbal Gondal
    • 1
    • 2
  • Rafiul Hassan
    • 3
  1. 1.Faculty of Information TechnologyMonash UniversityClaytonAustralia
  2. 2.ICSLFederation UniversityBallaratAustralia
  3. 3.King Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations