Advertisement

LWMC: A Locally Weighted Meta-Clustering Algorithm for Ensemble Clustering

  • Dong Huang
  • Chang-Dong WangEmail author
  • Jian-Huang Lai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10638)

Abstract

The last decade has witnessed a rapid development of the ensemble clustering technique. Despite the great progress that has been made, there are still some challenging problems in the ensemble clustering research. In this paper, we aim to address two of the challenging problems in ensemble clustering, that is, the local weighting problem and the scalability problem. Specifically, a locally weighted meta-clustering (LWMC) algorithm is proposed, which is featured by two main advantages. First, it is highly efficient, due to its ability of working and voting on clusters. Second, it incorporates a locally weighted voting strategy in the meta-clustering process, which can exploit the diversity of clusters by means of local uncertainty estimation and ensemble-driven cluster validity. Experiments on eight real-world datasets demonstrate the superiority of the proposed algorithm in both clustering quality and efficiency.

Keywords

Ensemble clustering Consensus clustering Meta-clustering Local weighting Scalability 

Notes

Acknowledgement

This work was supported by NSFC (61602189, 61502543 and 61573387), the Ph.D. Start-up Fund of Natural Science Foundation of Guangdong Province, China (2016A030310457), Guangdong Natural Science Funds for Distinguished Young Scholars (2016A030306014), and the Tip-Top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program (No. 2016TQ03X542).

References

  1. 1.
    Fern, X.Z., Brodley, C.E.: Solving cluster ensemble problems by bipartite graph partitioning. In: International Conference on Machine Learning (ICML 2004) (2004)Google Scholar
  2. 2.
    Fred, A.L.N., Jain, A.K.: Combining multiple clusterings using evidence accumulation. IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 835–850 (2005)CrossRefGoogle Scholar
  3. 3.
    Huang, D., Lai, J.-H., Wang, C.-D.: Exploiting the wisdom of crowd: a multi-granularity approach to clustering ensemble. In: Sun, C., Fang, F., Zhou, Z.-H., Yang, W., Liu, Z.-Y. (eds.) IScIDE 2013. LNCS, vol. 8261, pp. 112–119. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-42057-3_15 CrossRefGoogle Scholar
  4. 4.
    Huang, D., Lai, J.H., Wang, C.D.: Combining multiple clusterings via crowd agreement estimation and multi-granularity link analysis. Neurocomputing 170, 240–250 (2015)CrossRefGoogle Scholar
  5. 5.
    Huang, D., Lai, J.H., Wang, C.D.: Robust ensemble clustering using probability trajectories. IEEE Trans. Knowl. Data Eng. 28(5), 1312–1326 (2016)CrossRefGoogle Scholar
  6. 6.
    Huang, D., Lai, J.H., Wang, C.D., Yuen, P.C.: Ensembling over-segmentations: from weak evidence to strong segmentation. Neurocomputing 207, 416–427 (2016)CrossRefGoogle Scholar
  7. 7.
    Huang, D., Lai, J., Wang, C.D.: Ensemble clustering using factor graph. Pattern Recogn. 50, 131–142 (2016)CrossRefGoogle Scholar
  8. 8.
    Huang, D., Wang, C.D., Lai, J.H.: Locally weighted ensemble clustering. IEEE Trans. Cybern. (2017). doi: 10.1109/TCYB.2017.2702343
  9. 9.
    Iam-On, N., Boongoen, T., Garrett, S., Price, C.: A link-based approach to the cluster ensemble problem. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2396–2409 (2011)CrossRefGoogle Scholar
  10. 10.
    Li, T., Ding, C.: Weighted consensus clustering. In: SIAM International Conference on Data Mining (SDM 2008), pp. 798–809 (2008)Google Scholar
  11. 11.
    Li, Y., Yu, J., Hao, P., Li, Z.: Clustering ensembles based on normalized edges. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 664–671. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-71701-0_71 CrossRefGoogle Scholar
  12. 12.
    Liu, H., Wu, J., Liu, T., Tao, D., Fu, Y.: Spectral ensemble clustering via weighted k-means: theoretical and practical evidence. IEEE Trans. Knowl. Data Eng. 29(5), 1129–1143 (2017)CrossRefGoogle Scholar
  13. 13.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)CrossRefGoogle Scholar
  14. 14.
    Singh, V., Mukherjee, L., Peng, J., Xu, J.: Ensemble clustering using semidefinite programming with applications. Mach. Learn. 79(1–2), 177–200 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Strehl, A., Ghosh, J.: Cluster ensembles: a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2003)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Wu, J., Liu, H., Xiong, H., Cao, J., Chen, J.: K-means-based consensus clustering: a unified view. IEEE Trans. Knowl. Data Eng. 27(1), 155–169 (2015)CrossRefGoogle Scholar
  17. 17.
    Yi, J., Yang, T., Jin, R., Jain, A.K.: Robust ensemble clustering by matrix completion. In: IEEE International Conference on Data Mining (ICDM 2012), pp. 1176–1181 (2012)Google Scholar
  18. 18.
    Zhong, C., Yue, X., Zhang, Z., Lei, J.: A clustering ensemble: two-level-refined co-association matrix with path-based transformation. Pattern Recogn. 48(8), 2699–2709 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Dong Huang
    • 1
  • Chang-Dong Wang
    • 2
    • 3
    • 4
    Email author
  • Jian-Huang Lai
    • 2
    • 3
    • 4
  1. 1.College of Mathematics and InformaticsSouth China Agricultural UniversityGuangzhouChina
  2. 2.School of Data and Computer ScienceSun Yat-sen UniversityGuangzhouChina
  3. 3.Guangdong Key Laboratory of Information Security TechnologySun Yat-sen UniversityGuangzhouChina
  4. 4.Key Laboratory of Machine Intelligence and Advanced ComputingMinistry of EducationGuangzhouChina

Personalised recommendations