Cryptosporidium

  • Mariela L. Tomazic
  • Carlos Garro
  • Leonhard Schnittger
Chapter

Abstract

Cryptosporidium sp. infects the gastrointestinal tract of a wide range of vertebrates, including domestic and livestock animals as well as humans. Cryptosporidiosis of neonatal farm ruminants causes considerable economic losses as the disease is commonly associated with intense diarrhea leading to an impaired growth, a decreased performance and production, and often animal death. The highly infective oocyst stage is excreted with the feces and disseminated into the environment, contaminating water and food. Neonatal calves are a major reservoir of the zoonotic C. parvum, which causes, in addition to the anthroponotic C. hominis, human cryptosporidiosis and is of considerable public health concern. Currently, no vaccine or efficient drug is available against the disease. From a veterinarian economical point of view, C. parvum is the most important species among the 30 recognized species infecting bovines, lamb, goats, pigs, horses, and dogs worldwide. After the discovery of C. parvum by Tyzzer in the year 1912, the taxon Cryptosporidium has been classified into coccidia. However, recent findings on the Cryptosporidium life cycle and molecular phylogenetic evidence resulted in the reclassification of Cryptosporidium into the gregarines. This novel placement appreciates previously underestimated and/or neglected features of Cryptosporidium that are common to gregarines such as a low host specificity and/or the possibility to survive without a host.

Keywords

Cryptosporidium Cryptosporidium parvum Bovine cryptosporidiosis Human cryptosporidiosis Cryptosporidiosis Oocyst Diarrhea Gregarines Farm animals Companion animals 

References

  1. Abbassi H, Coudert F, Chérel Y, et al. Renal Cryptosporidiosis (Cryptosporidium baileyi) in specific-pathogen-free chickens experimentally coinfected with Marek’s disease virus. Avian Dis. 1999;43:738–44.  https://doi.org/10.2307/1592742.CrossRefPubMedGoogle Scholar
  2. Abrahamsen M, Lancto C, Walcheck B, et al. Localization of a/b and g/d T Lymphocytes in Cryptosporidium parvum-infected tissues in Naive and Immune Calves. Infect Immun. 1997;65:2428–33.PubMedCentralPubMedGoogle Scholar
  3. Abubakar I, Aliyu SH, Arumugam C, et al. Treatment of cryptosporidiosis in immunocompromised individuals: systematic review and meta-analysis. Br J Clin Pharmacol. 2007;63:387–93.  https://doi.org/10.1111/j.1365-2125.2007.02873.x.CrossRefPubMedCentralPubMedGoogle Scholar
  4. Agnamey P, Sarfati C, Pinel C, et al. Evaluation of four commercial rapid immunochromatographic assays for detection of Cryptosporidium antigens in stool samples: a blind multicenter trial. J Clin Microbiol. 2011;49:1605–7.  https://doi.org/10.1128/JCM.02074-10.CrossRefPubMedCentralPubMedGoogle Scholar
  5. Aldeyarbi HM, Karanis P. The ultra-structural similarities between Cryptosporidium parvum and the Gregarines. J Eukaryot Microbiol. 2016a;63:79–85.  https://doi.org/10.1111/jeu.12250.CrossRefGoogle Scholar
  6. Aldeyarbi HM, Karanis P. The fine structure of sexual stage development and sporogony of Cryptosporidium parvum in cell-free culture. Parasitology. 2016b;143(6):749–61.  https://doi.org/10.1017/S0031182016000275.CrossRefGoogle Scholar
  7. Alonso-Fresán MU, García-Álvarez A, Salazar-García F, et al. Prevalence of Cryptosporidium spp. in asymptomatic sheep in family flocks from Mexico State. J Vet Med Ser B Infect Dis Vet Public Heal. 2005;52:482–3.  https://doi.org/10.1111/j.1439-0450.2005.00889.x.CrossRefGoogle Scholar
  8. Alves M, Xiao L, Sulaiman I, et al. Subgenotype analysis of Cryptosporidium isolates from humans Cattle, and Zoo Ruminants in Portugal. J Clin Microbiol. 2003;41(6):2744–7.  https://doi.org/10.1128/JCM.41.6.2744.CrossRefPubMedCentralPubMedGoogle Scholar
  9. Alvarez-Pellitero P, Sitjà-Bobadilla A. Cryptosporidium molnari n. sp. (Apicomplexa: Cryptosporidiidae) infecting two marine fish species, Sparus aurata L. and Dicentrarchus labrax L. Int J Parasitol. 2002;32:1007–21.CrossRefPubMedGoogle Scholar
  10. Amer S, Zidan S, Adamu H, et al. Prevalence and characterization of Cryptosporidium spp. in dairy cattle in Nile river delta provinces, Egypt. Exp Parasitol. 2013;135:518–23.  https://doi.org/10.1016/j.exppara.2013.09.002.CrossRefGoogle Scholar
  11. Argenzio R, Liacos J, Levy M, et al. Villous atrophy, crypt hyperplasia, cellular infiltration, and impaired glucose-Na absorption in enteric cryptosporidiosis of pigs. Gastroenterology. 1990;98:1129–40.CrossRefGoogle Scholar
  12. Askari N, Shayan P, Mokhber-Dezfouli MR, et al. Evaluation of recombinant P23 protein as a vaccine for passive immunization of newborn calves against Cryptosporidium parvum. Parasite Immunol. 2016;38:282–9.  https://doi.org/10.1111/pim.12317.CrossRefGoogle Scholar
  13. Auray G, Lacroix-Lamande S, Mancassola R, et al. Involvement of intestinal epithelial cells in dendritic cell recruitment during C. parvum infection. Microbes Infect. 2007;9:574–82.  https://doi.org/10.1016/j.micinf.2007.01.026.CrossRefGoogle Scholar
  14. Baldursson S, Karanis P. Waterborne transmission of protozoan parasites: review of worldwide outbreaks—an update 2004-2010. Water Res. 2011;45:6603–14.CrossRefGoogle Scholar
  15. Barker IK, Carbonell PL. Cryptosporidium agni sp.n. from lambs, and Cryptosporidium bovis sp.n. from a calf, with observations on the oocyst. Z Parasitenkd. 1974;44:289–98.  https://doi.org/10.1007/BF00366112.CrossRefGoogle Scholar
  16. Barr SC, Jamrosz GF, Hornbuckle WE, et al. Use of paromomycin for treatment of cryptosporidiosis in a cat. J Am Vet Med Assoc. 1994;205:1742–3.Google Scholar
  17. Barta JR, Thompson RCA. What is Cryptosporidium? Reappraising its biology and phylogenetic affinities. Trends Parasitol. 2006;22:463–8.  https://doi.org/10.1016/j.pt.2006.08.001.CrossRefGoogle Scholar
  18. Bhat N, Joe A, PereiraRerrin M, Ward HD. Cryptosporidium p30, a galactose/N-acetylgalactosamine-specific lectin, mediates infection in vitro. J Biol Chem. 2007;282:34877–87.  https://doi.org/10.1074/jbc.M706950200.CrossRefGoogle Scholar
  19. Bjorneby JM, Leach DR, Perryman LE. Persistent cryptosporidiosis in horses with severe combined immunodeficiency. Infect Immun. 1991;59:3823–6.PubMedCentralPubMedGoogle Scholar
  20. Black EK, Finch GR, Taghi-Kilani R, Belosevic M. Comparison of assays for Cryptosporidium parvum oocysts viability after chemical disinfection. FEMS Microbiol Lett. 1996;135:187–9.  https://doi.org/10.1016/0378-1097(95)00447-5.CrossRefGoogle Scholar
  21. Borowski H, Clode PL, Thompson RCA. Active invasion and/or encapsulation? A reappraisal of host-cell parasitism by Cryptosporidium. Trends Parasitol. 2008;24:509–16.  https://doi.org/10.1016/j.pt.2008.08.002.CrossRefGoogle Scholar
  22. Borowski H, Thompson RC, Armstrong T, Clode PL. Morphological characterization of Cryptosporidium parvum life-cycle stages in an in vitro model system. Parasitology. 2010;137:13–26.  https://doi.org/10.1017/S0031182009990837.CrossRefGoogle Scholar
  23. Boulter-Bitzer JI, Lee H, Trevors JT. Molecular targets for detection and immunotherapy in Cryptosporidium parvum. Biotechnol Adv. 2007;25:13–44.  https://doi.org/10.1016/j.biotechadv.2006.08.003.CrossRefGoogle Scholar
  24. Brook E, Hart CA, French N, Christley R. Prevalence and risk factors for Cryptosporidium spp. infection in young calves. Vet Parasitol. 2008;152:46–52.  https://doi.org/10.1016/j.vetpar.2007.12.003.CrossRefGoogle Scholar
  25. Bruijnesteijn van Coppenraet LES, Wallinga JA, Ruijs GJHM, et al. Parasitological diagnosis combining an internally controlled real-time PCR assay for the detection of four protozoa in stool samples with a testing algorithm for microscopy. Clin Microbiol Infect. 2009;15:869–74.  https://doi.org/10.1111/j.1469-0691.2009.02894.x.CrossRefGoogle Scholar
  26. Budu-Amoako E, Greenwood SJ, Dixon BR, et al. Giardia and Cryptosporidium on dairy farms and the role these farms may play in contaminating water sources in Prince Edward Island, Canada. J Vet Intern Med. 2012;26:668–73.  https://doi.org/10.1111/j.1939-1676.2012.00930.x.CrossRefGoogle Scholar
  27. Bukhari Z, McCuin RM, Fricker CR, Clancy JL. Immunomagnetic separation of Cryptosporidium parvum from source water samples of various turbidities. Appl Environ Microbiol. 1998;64:4495–9.PubMedCentralPubMedGoogle Scholar
  28. Burton A, Nydam D, Dearen T, et al. The prevalence of Cryptosporidium and identification of the cryptosporidium horse genotype in foals in New York. Vet Parasitol. 2010;174(1-2):139–44.  https://doi.org/10.1016/j.vetpar.2010.08.019.CrossRefGoogle Scholar
  29. Cacciò SM, Chalmers RM. Human cryptosporidiosis in Europe. Clin Microbiol Infect. 2016;22(6):471–80.  https://doi.org/10.1016/j.cmi.2016.04.021.CrossRefGoogle Scholar
  30. Cacciò S, Pinter E, Fantini R, et al. Human infection with Cryptosporidium felis: case report and literature review. Emerg Infect Dis. 2002;8:85–6.  https://doi.org/10.3201/eid0801.010269.CrossRefPubMedCentralPubMedGoogle Scholar
  31. Cama V, Bern C, Sulaiman I, et al. Cryptosporidium species and genotypes in HIV-positive patients in Lima. J Eukaryot Microbiol. 2003;50:531–3.  https://doi.org/10.1111/j.1550-7408.2003.tb00620.x.CrossRefGoogle Scholar
  32. Carraway M, Tzipori S, Widmer G. Identification of genetic heterogeneity in the Cryptosporidium parvum ribosomal repeat. Appl Environ Microbiol. 1996;62:712–6.PubMedCentralPubMedGoogle Scholar
  33. Castro-Hermida JA, González-Losada Y, Freire-Santos F, et al. Evaluation of β-cyclodextrin against natural infections of cryptosporidiosis in calves. Vet Parasitol. 2001;101:85–9.  https://doi.org/10.1016/S0304-4017(01)00505-2.CrossRefGoogle Scholar
  34. Castro-Hermida JA, Gonzalez-Losada Y, Freire-Santos F, et al. Efficacy of beta-cyclodextrin against experimental cryptosporidiosis in neonatal lambs. J Parasitol. 2002;88:185–7.  https://doi.org/10.1645/0022-3395(2002)088[0185:EOCAEC]2.0.CO;2.CrossRefGoogle Scholar
  35. Castro-Hermida JA, Pors I, Otero-Espinar F, et al. Efficacy of α-cyclodextrin against experimental cryptosporidiosis in neonatal goats. Vet Parasitol. 2004;120:35–41.  https://doi.org/10.1016/j.vetpar.2003.12.012.CrossRefGoogle Scholar
  36. Cavalier-Smith T. Gregarine site-heterogeneous 18S rDNA trees, revision of gregarine higher classification, and the evolutionary diversification of Sporozoa. Eur J Protistol. 2014;50:472–95.  https://doi.org/10.1016/j.ejop.2014.07.002.CrossRefPubMedCentralPubMedGoogle Scholar
  37. Cevallos AM, Bhat N, Verdon R, et al. Mediation of Cryptosporidium parvum infection in vitro by mucin-like glycoproteins defined by a neutralizing monoclonal antibody. Infect Immun. 2000a;68:5167–75.  https://doi.org/10.1128/IAI.68.9.5167-5175.2000.CrossRefPubMedCentralPubMedGoogle Scholar
  38. Cevallos AM, Zhang X, Waldor MK, et al. Molecular cloning and expression of a gene encoding Cryptosporidium parvum glycoproteins gp40 and gp15. Infect Immun. 2000b;68:4108–16.  https://doi.org/10.1128/IAI.68.7.4108-4116.2000.CrossRefPubMedCentralPubMedGoogle Scholar
  39. Chalmers RM, Katzer F. Looking for Cryptosporidium: the application of advances in detection and diagnosis. Trends Parasitol. 2013;29:237–51.  https://doi.org/10.1016/j.pt.2013.03.001.CrossRefGoogle Scholar
  40. Chalmers R, Smith R, Elwin K, et al. Epidemiology of anthroponotic and zoonotic human cryptosporidiosis in England and Wales, 2004-2006. Epidemiol Infect. 2011a;139:700–12.  https://doi.org/10.1017/S0950268810001688.CrossRefGoogle Scholar
  41. Chalmers RM, Smith RP, Hadfield SJ, et al. Zoonotic linkage and variation in Cryptosporidium parvum from patients in the United Kingdom. Parasitol Res. 2011b;108(5):1321.  https://doi.org/10.1007/s00436-010-2199-x.CrossRefGoogle Scholar
  42. Checkley W, White AC, Jaganath D, et al. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium. Lancet Infect Dis. 2015;15:85–94.  https://doi.org/10.1016/S1473-3099(14)70772-8.CrossRefPubMedGoogle Scholar
  43. Chen W, Harp J, Harmsen A. Requirements for CD4+ cells and gamma interferon in resolution of established Cryptosporidium parvum infection in mice. Infect Immun. 1993a;61:3928–32.PubMedCentralPubMedGoogle Scholar
  44. Chen WX, Harp JA, Harmsen AG, Havell EA. Gamma-interferon functions in resistance to Cryptosporidium parvum infection in severe combined immunodeficient mice. Infect Immun. 1993b;61:3548–51.PubMedCentralPubMedGoogle Scholar
  45. Chen XM, Levine SA, Tietz P, et al. Cryptosporidium parvum is cytopathic for cultured human biliary epithelia via an apoptotic mechanism. Hepatology. 1998;28:906–13.  https://doi.org/10.1002/hep.510280402.CrossRefGoogle Scholar
  46. Chen XM, O’Hara SP, Huang BQ, et al. Apical organelle discharge by Cryptosporidium parvum is temperature, cytoskeleton, and intracellular calcium dependent and required for host cell invasion. Infect Immun. 2004;72:6806–16.  https://doi.org/10.1128/IAI.72.12.6806-6816.2004.CrossRefPubMedCentralPubMedGoogle Scholar
  47. Clode PL, Koh WH, Thompson RCA. Life without a host cell: what is Cryptosporidium? Trends Parasitol. 2015;31:614–24.  https://doi.org/10.1016/j.pt.2015.08.005.CrossRefGoogle Scholar
  48. Cohen ND, Snowden K. Cryptosporidial diarrhea in foals. Compend Contin Educ Pract Vet. 1996;18:298–306.Google Scholar
  49. Coupe S, Sarfati C, Hamane S, et al. Detection of Cryptosporidium and identification to the species level by nested PCR and restriction fragment length polymorphism. J Clin Microbiol. 2005;43:1017–23.  https://doi.org/10.1128/JCM.43.3.1017.CrossRefPubMedCentralPubMedGoogle Scholar
  50. Current WL, Upton SJ, Haynes TB. The life cycle of Cryptosporidium baileyi n. sp. (Apicomplexa, Cryptosporidiidae) infecting chickens. J Protozool. 1986;33:289–96.  https://doi.org/10.1111/j.1550-7408.1986.tb05608.x.CrossRefGoogle Scholar
  51. De Graaf DC, Vanopdenbosch E, Ortega-Mora LM, et al. A review of the importance of cryptosporidiosis in farm animals. Int J Parasitol. 1999;29:1269–87.  https://doi.org/10.1016/S0020-7519(99)00076-4.CrossRefGoogle Scholar
  52. De Lucio A, Bailo B, Aguilera M, et al. No molecular epidemiological evidence supporting household transmission of zoonotic Giardia duodenalis and Cryptosporidium spp. from pet dogs and cats in the province of Álava, Northern Spain. Acta Trop. 2017;170:48–56.  https://doi.org/10.1016/j.actatropica.2017.02.024.CrossRefGoogle Scholar
  53. De Waele V, Speybroeck N, Berkvens D, et al. Control of cryptosporidiosis in neonatal calves: use of halofuginone lactate in two different calf rearing systems. Prev Vet Med. 2010;96:143–51.  https://doi.org/10.1016/j.prevetmed.2010.06.017.CrossRefPubMedGoogle Scholar
  54. De Waele V, Berzano M, Berkvens D, et al. Age-stratified Bayesian analysis to estimate sensitivity and specificity of four diagnostic tests for detection of Cryptosporidium oocysts in neonatal calves. J Clin Microbiol. 2011;49:76–84.  https://doi.org/10.1128/JCM.01424-10.CrossRefPubMedGoogle Scholar
  55. Delafosse A, Chartier C, Dupuy MC, et al. Cryptosporidium parvum infection and associated risk factors in dairy calves in western France. Prev Vet Med. 2015;118:406–12.  https://doi.org/10.1016/j.prevetmed.2015.01.005.CrossRefGoogle Scholar
  56. Deng M, Templeton TJ, London NR, et al. Cryptosporidium parvum genes containing thrombospondin type 1 domains. Infect Immun. 2002;70:6987–95.  https://doi.org/10.1128/IAI.70.12.6987-6995.2002.CrossRefPubMedCentralPubMedGoogle Scholar
  57. Deng L, Wei L, Zhong Z, et al. Occurrence and genetic characteristics of Cryptosporidium hominis and Cryptosporidium andersoni in Horses from Southwestern China. J Eukaryot Microbiol. 2017;64(5):716–20.  https://doi.org/10.1111/ijlh.12426.CrossRefPubMedCentralPubMedGoogle Scholar
  58. Díaz P, Quílez J, Robinson G, et al. Identification of Cryptosporidium xiaoi in diarrhoeic goat kids (Capra hircus) in Spain. Vet Parasitol. 2010;172:132–4.  https://doi.org/10.1016/j.vetpar.2010.04.029.CrossRefPubMedGoogle Scholar
  59. Díaz P, Hadfield SJ, Quílez J, et al. Assessment of three methods for multilocus fragment typing of Cryptosporidium parvum from domestic ruminants in north west Spain. Vet Parasitol. 2012;186:188–95.  https://doi.org/10.1016/j.vetpar.2011.11.039.CrossRefPubMedGoogle Scholar
  60. Doris M-D, Michaela G, Kristin E, et al. Distribution of Cryptosporidium species in sheep in the UKNo Title. Vet Parasitol. 2008;154:214–9.CrossRefGoogle Scholar
  61. Drumo R, Widmer G, Morrison LJ, et al. Evidence of host-associated populations of Cryptosporidium parvum in Italy. Appl Environ Microbiol. 2012;78:3523–9.  https://doi.org/10.1128/AEM.07686-11.CrossRefPubMedCentralPubMedGoogle Scholar
  62. Duranti A, Cacciò SM, Pozio E, et al. Risk factors associated with Cryptosporidium parvum infection in cattle. Zoonoses Public Heal. 2009;56:176–82.  https://doi.org/10.1111/j.1863-2378.2008.01173.x.CrossRefGoogle Scholar
  63. Elitok B, Elitok OM, Pulat H. Efficacy of azithromycin dihydrate in treatment of cryptosporidiosis in naturally infected dairy calves. J Vet Intern Med. 2005;19:590–3.  https://doi.org/10.1892/0891-6640(2005)19[590:EOADIT]2.0.CO;2.CrossRefPubMedGoogle Scholar
  64. Ellis AE, Brown CA, Miller DL. Diagnostic exercise: chronic vomiting in a dog. Vet Pathol. 2010;47:991–3.  https://doi.org/10.1177/0300985810375052.CrossRefGoogle Scholar
  65. Elwin K, Robinson G, Hadfield SJ, et al. A comparison of two approaches to extracting Cryptosporidium DNA from human stools as measured by a real-time PCR assay. J Microbiol Methods. 2012;89:38–40.  https://doi.org/10.1016/j.mimet.2012.02.006.CrossRefGoogle Scholar
  66. Enemark HL, Ahrens P, Bille-Hansen V, et al. Cryptosporidium parvum: infectivity and pathogenicity of the “porcine” genotype. Parasitology. 2003a;126:407–16.  https://doi.org/10.1017/S0031182003003032.CrossRefPubMedGoogle Scholar
  67. Enemark HL, Bille-Hansen V, Lind P, et al. Pathogenicity of Cryptosporidium parvum—evaluation of an animal infection model. Vet Parasitol. 2003b;113:35–57.  https://doi.org/10.1016/S0304-4017(03)00034-7.CrossRefPubMedGoogle Scholar
  68. Fayer R. General biology. In: Fayer R, Xiao L, editors. Cryptosporidium & cryptosporidiosis. 2nd ed. Boca Raton: CRC; 2008. p. 1–42.Google Scholar
  69. Fayer R. Taxonomy and species delimitation in Cryptosporidium. Exp Parasitol. 2010;124:90–7.  https://doi.org/10.1016/j.exppara.2009.03.005.CrossRefGoogle Scholar
  70. Fayer R, Leek R. The effects of reducing conditions, medium, pH, temperature, and time on in vitro excystation of Cryptosporidium. J Protozool. 1984;31:567–9.  https://doi.org/10.1111/j.1550-7408.1984.tb05504.x.CrossRefGoogle Scholar
  71. Fayer R, Santín M. Cryptosporidium xiaoi n. sp. (Apicomplexa: Cryptosporidiidae) in sheep (Ovis aries). Vet Parasitol. 2009;164:192–200.  https://doi.org/10.1016/j.vetpar.2009.05.011.CrossRefGoogle Scholar
  72. Fayer R, Guidry A, Blagburn BL. Immunotherapeutic efficacy of bovine colostral immunoglobulins from a hyperimmunized cow against cryptosporidiosis in neonatal mice. Infect Immun. 1990;58:2962–5.PubMedCentralPubMedGoogle Scholar
  73. Fayer R, Gasbarre L, Pasquali P, et al. Cryptosporidium parvum infection in bovine neonates : dynamic clinical, parasitic and immunologic patterns. Int J Parasitol. 1998;28:49–56.CrossRefPubMedGoogle Scholar
  74. Fayer R, Morgan U, Upton SJ. Epidemiology of Cryptosporidium: transmission, detection and identification. Int J Parasitol. 2000;30:1305–22.  https://doi.org/10.1016/S0020-7519(00)00135-1.CrossRefPubMedGoogle Scholar
  75. Fayer R, Trout JM, Xiao L, et al. Cryptosporidium canis n. sp. from domestic dogs. J Parasitol. 2001;87:1415–22.  https://doi.org/10.1645/0022-3395(2001)087[1415:CCNSFD]2.0.CO;2.CrossRefPubMedGoogle Scholar
  76. Fayer R, Santín M, Xiao L. Cryptosporidium bovis n. sp. (Apicomplexa: Cryptosporidiidae) in cattle (Bos taurus). J Parasitol. 2005;91:624–9.  https://doi.org/10.1645/GE-3435.CrossRefPubMedGoogle Scholar
  77. Fayer R, Santín M, Trout JM, Greiner E. Prevalence of species and genotypes of Cryptosporidium found in 1-2-year-old dairy cattle in the eastern United States. Vet Parasitol. 2006;135:105–12.  https://doi.org/10.1016/j.vetpar.2005.08.003.CrossRefPubMedGoogle Scholar
  78. Fayer R, Santin M, Trout JM. Prevalence of Cryptosporidium species and genotypes in mature dairy cattle on farms in eastern United States compared with younger cattle from the same locations. Vet Parasitol. 2007;145:260–6.  https://doi.org/10.1016/j.vetpar.2006.12.009.CrossRefPubMedGoogle Scholar
  79. Fayer R, Santín M, Trout JM. Cryptosporidium ryanae n. sp. (Apicomplexa: Cryptosporidiidae) in cattle (Bos taurus). Vet Parasitol. 2008;156:191–8.  https://doi.org/10.1016/j.vetpar.2008.05.024.CrossRefPubMedGoogle Scholar
  80. Fayer R, Santín M, Dargatz D. Species of Cryptosporidium detected in weaned cattle on cow—calf operations in the United States. Vet Parasitol. 2010a;170:187–92.  https://doi.org/10.1016/j.vetpar.2010.02.040.CrossRefPubMedGoogle Scholar
  81. Fayer R, Santín M, Macarisin D. Cryptosporidium ubiquitum n. sp. in animals and humans. Vet Parasitol. 2010b;172:23–32.  https://doi.org/10.1016/j.vetpar.2010.04.028.CrossRefPubMedGoogle Scholar
  82. Fernandez A, Quezada M, Gomez MA, et al. Cryptosporidiosis in chickens from southern Spain. Avian Dis. 1990;34:224–7.CrossRefGoogle Scholar
  83. Follet J, Guyot K, Leruste H, et al. Cryptosporidium infection in a veal calf cohort in France: molecular characterization of species in a longitudinal study. Vet Res. 2011;42:116.  https://doi.org/10.1186/1297-9716-42-116.CrossRefPubMedCentralPubMedGoogle Scholar
  84. Foster DM, Smith GW. Pathophysiology of diarrhea in calves. Vet Clin North Am Food Anim Pract. 2009;25(13–36):xi.  https://doi.org/10.1016/j.cvfa.2008.10.013.CrossRefGoogle Scholar
  85. Foster DM, Stauffer SH, Stone MR, Gookin JL. Proteasome inhibition of pathologic shedding of enterocytes to defend barrier function requires X-linked inhibitor of apoptosis protein and nuclear factor b. Gastroenterology. 2012;143(1):133–44.e4.  https://doi.org/10.1053/j.gastro.2012.03.030.CrossRefGoogle Scholar
  86. Galuppi R, Piva S, Castagnetti C, et al. Cryptosporidium parvum: from foal to veterinary students. Vet Parasitol. 2016;219:53–6.  https://doi.org/10.1016/j.vetpar.2016.02.001.CrossRefGoogle Scholar
  87. Garro CJ, Morici GE, Utges ME, et al. Prevalence and risk factors for shedding of Cryptosporidium spp. oocysts in dairy calves of Buenos Aires Province, Argentina. Parasite Epidemiol Control. 2016;1:36–41.  https://doi.org/10.1016/j.parepi.2016.03.008.CrossRefGoogle Scholar
  88. Giadinis ND, Papadopoulos E, Lafi SQ, et al. Efficacy of halofuginone lactate for the treatment and prevention of cryptosporidiosis in goat kids: an extensive field trial. Small Rumin Res. 2008;76:195–200.  https://doi.org/10.1016/j.smallrumres.2008.01.007.CrossRefGoogle Scholar
  89. Giadinis ND, Symeoudakis SPE, Lafi SQ, Karatzias H. Comparison of two techniques for diagnosis of cryptosporidiosis in diarrhoeic goat kids and lambs in Cyprus. Trop Anim Health Prod. 2012;44:1561–5.  https://doi.org/10.1007/s11250-012-0106-4.CrossRefGoogle Scholar
  90. Giadinis N, Papadopoulos E, Lafi S, et al. Epidemiological observations on cryptosporidiosis in diarrheic goat kids in Greece. Vet Med Int. 2015;2015:764193.  https://doi.org/10.1155/2015/764193.CrossRefPubMedCentralPubMedGoogle Scholar
  91. Giangaspero A, Iorio R, Paoletti B, et al. Molecular evidence for Cryptosporidium infection in dogs in Central Italy. Parasitol Res. 2006;99:297–9.  https://doi.org/10.1007/s00436-006-0169-0.CrossRefGoogle Scholar
  92. Giles M, Chalmers R, Pritchard G, et al. Cryptosporidium hominis in a goat and a sheep in the UK. Vet Rec. 2009;164(1):24–5.CrossRefGoogle Scholar
  93. Goñi P, Martín B, Villacampa M, et al. Evaluation of an immunochromatographic dip strip test for simultaneous detection of Cryptosporidium spp, Giardia duodenalis, and Entamoeba histolytica antigens in human faecal samples. Eur J Clin Microbiol Infect Dis. 2012;31(8):2077–82.  https://doi.org/10.1007/s10096-012-1544-7.CrossRefGoogle Scholar
  94. Gookin JL, Duckett LL, Armstrong MU, et al. Nitric oxide synthase stimulates prostaglandin synthesis and barrier function in C. parvum-infected porcine ileum. Am J Physiol Gastrointest Liver Physiol. 2004;287:G571–81.  https://doi.org/10.1152/ajpgi.00413.2003.CrossRefGoogle Scholar
  95. Greene CE, Jacobs GJ, Prickett D. Intestinal malabsorption and cryptosporidiosis in an adult dog. J Am Vet Med Assoc. 1990;197:365–7.  https://doi.org/10.1016/S0020-7519(01)00361-7.CrossRefGoogle Scholar
  96. Grinberg A, Oliver L, Learmonth J, et al. Identification of Cryptosporidium parvum “‘cattle’” genotype from a severe outbreak of neonatal foal diarrhoea. Vet Rec. 2003;153:628–31.  https://doi.org/10.1136/vr.153.20.628.CrossRefGoogle Scholar
  97. Grinberg A, Learmonth J, Kwan E, et al. Genetic diversity and zoonotic potential of Cryptosporidium parvum causing foal diarrhea. J Clin Microbiol. 2008;46:2396–8.  https://doi.org/10.1128/JCM.00936-08.CrossRefPubMedCentralPubMedGoogle Scholar
  98. Hajdušek O, Ditrich O, Šlapeta J. Molecular identification of Cryptosporidium spp. in animal and human hosts from the Czech Republic. Vet Parasitol. 2004;122:183–92.  https://doi.org/10.1016/j.vetpar.2004.04.005.CrossRefGoogle Scholar
  99. Hamnes IS, Gjerde BK, Forberg T, Robertson LJ. Occurrence of Cryptosporidium and Giardia in suckling piglets in Norway. Vet Parasitol. 2007;144:222–33.  https://doi.org/10.1016/j.vetpar.2006.10.011.CrossRefGoogle Scholar
  100. Harp JA. Cryptosporidium and host resistance: historical perspective and some novel approaches. Anim Health Res Rev. 2003;4:53–62.  https://doi.org/10.1079/AHRR200352.CrossRefGoogle Scholar
  101. Harp JA, Goff JP. Strategies for the control of Cryptosporidium parvum infection in calves. J Dairy Sci. 1998;81:289–94.  https://doi.org/10.3168/jds.S0022-0302(98)75578-X CrossRefGoogle Scholar
  102. Heine J, Moon HW, Woodmansee DB. Persistent Cryptosporidium infection in congenitally athymic (nude) mice. Infect Immun. 1984;43:856–9.PubMedCentralPubMedGoogle Scholar
  103. Hijjawi NS, Meloni BP, Ng’anzo M, et al. Complete development of Cryptosporidium parvum in host cell-free culture. Int J Parasitol. 2004;34:769–77.  https://doi.org/10.1016/j.ijpara.2004.04.001.CrossRefGoogle Scholar
  104. Huang BQ, Chen X-M, LaRusso NF. Cryptosporidium parvum attachment to and internalization by human biliary epithelia in vitro: a morphologic study. J Parasitol. 2004;90:212–21.  https://doi.org/10.1645/GE-3204.CrossRefGoogle Scholar
  105. Imre K, Luca C, Costache M, et al. Zoonotic Cryptosporidium parvum in Romanian newborn lambs (Ovis aries). Vet Parasitol. 2013;191:119–22.  https://doi.org/10.1016/j.vetpar.2012.08.020.CrossRefGoogle Scholar
  106. Irwin PJ. Companion animal parasitology: a clinical perspective. Int J Parasitol. 2002;32:581–93.CrossRefGoogle Scholar
  107. Iseki M. Cryptosporidium felis sp.n. (Protozoa: Eimeriorina) from the domestic cat. J Parasitol. 1979;28:285–307.Google Scholar
  108. Jakobi V, Petry F. Differential expression of Cryptosporidium parvum genes encoding sporozoite surface antigens in infected HCT-8 host cells. Microbes Infect. 2006;8:2186–94.  https://doi.org/10.1016/j.micinf.2006.04.012.CrossRefGoogle Scholar
  109. Jenkins MC, Fayer R, Tilley M, Upton SJ. Cloning and expression of a cDNA encoding epitopes shared by 15- and 60-kilodalton proteins of Cryptosporidium parvum sporozoites. Infect Immun. 1993;61:2377–82.PubMedCentralPubMedGoogle Scholar
  110. Jenkins M, Higgins J, Kniel K, et al. Protection of calves against cryptosporiosis by oral inoculation with gamma-irradiated Cryptosporidium parvum oocysts. J Parasitol. 2004;90:1178–80.  https://doi.org/10.1645/GE-3333RN.CrossRefGoogle Scholar
  111. Jenkins MB, Eaglesham BS, Anthony LC, et al. Significance of wall structure, macromolecular composition, and surface polymers to the survival and transport of Cryptosporidium parvum oocysts. Appl Environ Microbiol. 2010;76:1926–34.  https://doi.org/10.1128/AEM.02295-09.CrossRefPubMedCentralPubMedGoogle Scholar
  112. Jex AR, Stanley KK, Lo W, et al. Detection of diarrhoeal pathogens in human faeces using an automated, robotic platform. Mol Cell Probes. 2012;26:11–5.  https://doi.org/10.1016/j.mcp.2011.10.004.CrossRefPubMedGoogle Scholar
  113. Johnson EH, Muirhead DE, Windsor JJ, et al. Atypical outbreak of caprine cryptosporidiosis in the Sultanate of Oman. Vet Rec. 1999;145:521–4.  https://doi.org/10.1136/vr.145.18.521.CrossRefPubMedGoogle Scholar
  114. Johnson EH, Windsor JJ, Muirhead DE, et al. Confirmation of the prophylactic value of paromomycin in a natural outbreak of caprine cryptosporidiosis. Vet Res Commun. 2000;24:63–7.  https://doi.org/10.1023/A:1006381522986.CrossRefPubMedGoogle Scholar
  115. Karanis P, Plutzer J, Halim NA, et al. Molecular characterization of Cryptosporidium from animal sources in Qinghai province of China. Parasitol Res. 2007;101:1575–80.  https://doi.org/10.1007/s00436-007-0681-x.CrossRefPubMedGoogle Scholar
  116. Karanis P, Kimura A, Nagasawa H, et al. Observations on Cryptosporidium life cycle stages during excystation. J Parasitol. 2008;94:298–300.  https://doi.org/10.1645/GE-3348RN.CrossRefPubMedGoogle Scholar
  117. Kennedy GA, Kreitner GL, Strafuss AC. Cryptosporidiosis in three pigs. J Am Vet Med Assoc. 1977;170:348–50.PubMedGoogle Scholar
  118. King BJ, Keegan AR, Phillips R, et al. Dissection of the hierarchy and synergism of the bile derived signal on Cryptosporidium parvum excystation and infectivity. Parasitology. 2012;139:1533–46.  https://doi.org/10.1017/S0031182012000984.CrossRefPubMedGoogle Scholar
  119. Koh W, Clode PL, Monis P, Thompson RCA. Multiplication of the waterborne pathogen Cryptosporidium parvum in an aquatic biofilm system. Parasit Vectors. 2013;6:270.  https://doi.org/10.1186/1756-3305-6-270.CrossRefPubMedCentralPubMedGoogle Scholar
  120. Koh W, Thompson A, Edwards H, et al. Extracellular excystation and development of Cryptosporidium: tracing the fate of oocysts within Pseudomonas aquatic biofilm systems. BMC Microbiol. 2014;14:281.  https://doi.org/10.1186/s12866-014-0281-8.CrossRefPubMedCentralPubMedGoogle Scholar
  121. Kostopoulou D, Claerebout E, Arvanitis D, et al. Abundance, zoonotic potential and risk factors of intestinal parasitism amongst dog and cat populations: the scenario of Crete, Greece. Parasit Vectors. 2017;10:43.  https://doi.org/10.1186/s13071-017-1989-8.CrossRefPubMedCentralPubMedGoogle Scholar
  122. Kvác M, Hanzlíková D, Sak B, Kvetonová D. Prevalence and age-related infection of Cryptosporidium suis, C. muris and Cryptosporidium pig genotype II in pigs on a farm complex in the Czech Republic. Vet Parasitol. 2009;160:319–22.CrossRefPubMedGoogle Scholar
  123. Kváč M, Sak B, Květoňová D, et al. Infectivity, pathogenicity, and genetic characteristics of mammalian gastric Cryptosporidium spp. in domestic ruminants. Vet Parasitol. 2008;153:363–7.  https://doi.org/10.1016/j.vetpar.2008.01.033.CrossRefPubMedGoogle Scholar
  124. Lallemond M, Villeneuve A, Belda J, Dubreuil P. Field study of the efficacy of halofuginone and decoquinate in the treatment of cryptosporidiosis in veal calves. Vet Rec. 2006;159:672–6.CrossRefGoogle Scholar
  125. Lalonde LF, Reyes J, Gajadhar AA. Application of a qPCR assay with melting curve analysis for detection and differentiation of protozoan oocysts in human fecal samples from Dominican Republic. Am J Trop Med Hyg. 2013;89:892–8.  https://doi.org/10.4269/ajtmh.13-0106.CrossRefPubMedCentralPubMedGoogle Scholar
  126. Langkjaer RB, Vigre H, Enemark HL, Maddox-Hyttel C. Molecular and phylogenetic characterization of Cryptosporidium and Giardia from pigs and cattle in Denmark. Parasitology. 2007;134:339–50.  https://doi.org/10.1017/S0031182006001533.CrossRefPubMedGoogle Scholar
  127. Lemgruber L, Lupetti P. Crystalloid body, refractile body and virus-like particles in Apicomplexa: what is in there? Parasitology. 2012;139:285–93.  https://doi.org/10.1017/S0031182011002034.CrossRefPubMedGoogle Scholar
  128. Lendner M, Daugschies A. Cryptosporidium infections: molecular advances. Parasitology. 2014;141:1511–32.  https://doi.org/10.1017/S0031182014000237.CrossRefPubMedGoogle Scholar
  129. Leoni F, Amar C, Nichols G, et al. Genetic analysis of Cryptosporidium from 2414 humans with diarrhoea in England between 1985 and 2000. J Med Microbiol. 2006;55:703–7.  https://doi.org/10.1099/jmm.0.46251-0.CrossRefPubMedGoogle Scholar
  130. Li W, Li Y, Song M, et al. Prevalence and genetic characteristics of Cryptosporidium, Enterocytozoon bieneusi and Giardia duodenalis in cats and dogs in Heilongjiang province, China. Vet Parasitol. 2015;208:125–34.  https://doi.org/10.1016/j.vetpar.2015.01.014.CrossRefPubMedGoogle Scholar
  131. Lihua X, Cama VA, Lilia C, et al. Possible transmission of Cryptosporidium canis among children and a dog in a household. J Clin Microbiol. 2007;45:2014–6.CrossRefGoogle Scholar
  132. Lindsay BB. Cryptosporidiosis in birds. In: Cryptosporidiosis of man and animals. Boca Raton: CRC; 1990. p. 133–48.Google Scholar
  133. Lucio-Forster A, Griffiths JK, Cama VA, Xiao L, Bowman DD. Minimal zoonotic risk of cryptosporidiosis from pet dogs and cats. Trends Parasitol. 2010;26:174–9.CrossRefGoogle Scholar
  134. Maddox-Hyttel C, Langkjær RB, Enemark HL, Vigre H. Cryptosporidium and Giardia in different age groups of Danish cattle and pigs-occurrence and management associated risk factors. Vet Parasitol. 2006;141:48–59.  https://doi.org/10.1016/j.vetpar.2006.04.032.CrossRefGoogle Scholar
  135. Majewska AC, Werner A, Sulima P, Luty T. Survey on equine cryptosporidiosis in Poland and the possibility of zoonotic transmission. Ann Agric Environ Med. 1999;6:161–5.PubMedGoogle Scholar
  136. Majewska AC, Werner A, Sulima P, Luty T. Prevalence of Cryptosporidium in sheep and goats bred on five farms in west-central region of Poland. Vet Parasitol. 2000;89:269–75.  https://doi.org/10.1016/S0304-4017(00)00212-0.CrossRefPubMedGoogle Scholar
  137. Majewska AC, Solarczyk P, Tamang L, Graczyk TK. Equine Cryptosporidium parvum infections in western Poland. Parasitol Res. 2004;93:274–8.  https://doi.org/10.1007/s00436-004-1111-y.CrossRefPubMedGoogle Scholar
  138. Mancassola R, Reperant JM, Naciri M, Chartier C. Chemoprophylaxis of Cryptosporidium parvum infection with paromomycin in kids and immunological study. Antimicrob Agents Chemother. 1995;39:75–8.  https://doi.org/10.1128/AAC.39.1.75.CrossRefPubMedCentralPubMedGoogle Scholar
  139. Mancassola R, Richard A, Naciri M. Evaluation of decoquinate to treat experimental cryptosporidiosis in kids. Vet Parasitol. 1997;69:31–7.  https://doi.org/10.1016/S0304-4017(96)01094-1.CrossRefPubMedGoogle Scholar
  140. Mason RW, Hartley WJ, Tilt L. Intestinal cryptosporidiosis in a kid goat. Aust Vet J. 1981;57:386–8.  https://doi.org/10.1111/j.1751-0813.1981.tb00529.x.CrossRefPubMedGoogle Scholar
  141. Masuno K, Yanai T, Hirata A, et al. Morphological and immunohistochemical features of Cryptosporidium andersoni in cattle. Vet Pathol. 2006;43:202–7.  https://doi.org/10.1354/vp.43-2-202.CrossRefPubMedGoogle Scholar
  142. Mohammed HO, Wade SE, Schaaf S. Risk factors associated with Cryptosporidium parvum infection in dairy cattle in southeastern New York State. Vet Parasitol. 1999;83:1–13.  https://doi.org/10.1016/S0304-4017(99)00032-1.CrossRefPubMedGoogle Scholar
  143. Monticello TM, Levy MG, Bunch SE, Fairley RA. Cryptosporidiosis in a feline leukemia virus-positive cat. J Am Vet Med Assoc. 1987;191:705–6.PubMedGoogle Scholar
  144. Moore DA, Atwill ER, Kirk JH, et al. Prophylactic use of decoquinate for infections with Cryptosporidium parvum in experimentally challenged neonatal calves. J Am Vet Med Assoc. 2003;223:839–45.  https://doi.org/10.2460/javma.2003.223.839.CrossRefPubMedGoogle Scholar
  145. Mor SM, Tzipori S. Cryptosporidiosis in children in Sub-Saharan Africa: a lingering challenge. Clin Infect Dis. 2009;47:915–21.  https://doi.org/10.1086/591539.Cryptosporidiosis.CrossRefGoogle Scholar
  146. Morgan UM, Constantine CC, O’Donoghue P, et al. Molecular characterization of Cryptosporidium isolates from humans and other animals using random amplified polymorphic DNA analysis. Am J Trop Med Hyg. 1995;52:559–64.CrossRefPubMedGoogle Scholar
  147. Morgan U, Weber R, Xiao L, et al. Molecular characterization of Cryptosporidium isolates obtained from human immunodeficiency virus-infected individuals living in Switzerland, Kenya, and the United States. J Clin Microbiol. 2000;38:1180–3.PubMedCentralPubMedGoogle Scholar
  148. Muñoz M, Alvarez M, Lanza I, Cármenes P. Role of enteric pathogens in the aetiology of neonatal diarrhoea in lambs and goat kids in Spain. Epidemiol Infect. 1996;117:203–11.CrossRefPubMedGoogle Scholar
  149. Naitza S, Spano F, Robson KJH, Crisanti A. The thrombospondin-related protein family of apicomplexan parasites: the gears of the cell invasion machinery. Parasitol Today. 1998;14:479–84.  https://doi.org/10.1016/S0169-4758(98)01346-5.CrossRefPubMedGoogle Scholar
  150. Noordeen F, Horadagoda NU, Faizal ACM, et al. Infectivity of Cryptosporidium parvum isolated from asymptomatic adult goats to mice and goat kids. Vet Parasitol. 2002;103:217–25.  https://doi.org/10.1016/S0304-4017(01)00578-7.CrossRefPubMedGoogle Scholar
  151. O’Connor RM, Wanyiri JW, Cevallos AM, et al. Cryptosporidium parvum glycoprotein gp40 localizes to the sporozoite surface by association with gp15. Mol Biochem Parasitol. 2007;156:80–3.  https://doi.org/10.1016/j.molbiopara.2007.07.010.CrossRefPubMedCentralPubMedGoogle Scholar
  152. Olabanji G, Maikai M, Beatty V, Otolorin GR. Prevalence and risk factors associated with faecal shedding of Cryptosporidium oocysts in dogs in the Federal Capital Territory, Abuja, Nigeria. Vet Med Int. 2016;2016:4591238.  https://doi.org/10.1155/2016/4591238.CrossRefPubMedCentralPubMedGoogle Scholar
  153. Ollivett TL, Nydam DV, Bowman DD, et al. Effect of nitazoxanide on cryptosporidiosis in experimentally infected neonatal dairy calves. J Dairy Sci. 2009;92:1643–8.  https://doi.org/10.3168/jds.2008-1474.CrossRefPubMedGoogle Scholar
  154. Omidian Z, Ebrahimzadeh E, Shahbazi P, et al. Application of recombinant Cryptosporidium parvum P23 for isolation and prevention. Parasitol Res. 2014;113:229–37.  https://doi.org/10.1007/s00436-013-3648-0.CrossRefPubMedGoogle Scholar
  155. Pagès-Manté A, Pagès-Bosch M, Majó-Masferrer N, et al. An outbreak of disease associated with cryptosporidia on a red-legged partridge (Alectoris rufa) game farm. Avian Pathol. 2007;36:275–8.  https://doi.org/10.1080/03079450701439389.CrossRefPubMedGoogle Scholar
  156. Panciera RJ, Thomassen RW, Garner FM. Cryptosporidial infection in a calf. Vet Path. 1971;8:479–84.CrossRefGoogle Scholar
  157. Paoletti B, Giangaspero A, Gatti A, et al. Immunoenzymatic analysis and genetic detection of Cryptosporidium parvum in lambs from Italy. Exp Parasitol. 2009;122:349–52.  https://doi.org/10.1016/j.exppara.2009.05.006.CrossRefPubMedGoogle Scholar
  158. Paraud C, Pors I, Chartier C. Evaluation of oral tilmicosin efficacy against severe cryptosporidiosis in neonatal kids under field conditions. Vet Parasitol. 2010;170:149–52.  https://doi.org/10.1016/j.vetpar.2010.01.024.CrossRefPubMedGoogle Scholar
  159. Park JH, Guk SM, Han ET, et al. Genotype analysis of Cryptosporidium spp. prevalent in a rural village in Hwasun-gun, Republic of Korea. Korean J Parasitol. 2006;44:27–33.  https://doi.org/10.3347/kjp.2006.44.1.27.CrossRefPubMedCentralPubMedGoogle Scholar
  160. Pavlasek I. Findings of cryptosporidia in the stomach of hens and of exotic and wild birds. Veterinarstvi. 2001;51:103–8.Google Scholar
  161. Pavlasek I, Ryan U. The first finding of a natural infection of Cryptosporidium muris in a cat. Vet Parasitol. 2007;144:349–52.  https://doi.org/10.1016/j.vetpar.2006.10.005.CrossRefPubMedGoogle Scholar
  162. Pavlasek I, Ryan U. Cryptosporidium varanii takes precedence over C. saurophilum. Exp Parasitol. 2008;118:434–7.CrossRefPubMedGoogle Scholar
  163. Pedraza-Díaz S, Amar C, Iversen A, et al. Unusual cryptosporidium species recovered from human faeces: first description of Cryptosporidium felis and Cryptosporidium “dog type” from patients in England. J Med Microbiol. 2001;50:293–6.  https://doi.org/10.1099/0022-1317-50-3-293.CrossRefPubMedGoogle Scholar
  164. Peng MM, Xiao L, Freeman AR, et al. Genetic polymorphism among Cryptosporidium parvum isolates: evidence of two distinct human transmission cycles. Emerg Infect Dis. 1997;3:567–73.  https://doi.org/10.3201/eid0304.970423.CrossRefPubMedCentralPubMedGoogle Scholar
  165. Perryman LE, Kapil SJ, Jones ML, Hunt EL. Protection of calves against cryptosporidiosis with immune bovine colostrum induced by a Cryptosporidium parvum recombinant protein. Vaccine. 1999;17:2142–9.  https://doi.org/10.1016/S0264-410X(98)00477-0.CrossRefPubMedGoogle Scholar
  166. Petermann J, Paraud C, Pors I, Chartier C. Efficacy of halofuginone lactate against experimental cryptosporidiosis in goat neonates. Vet Parasitol. 2014;202:326–9.  https://doi.org/10.1016/j.vetpar.2014.02.027.CrossRefPubMedGoogle Scholar
  167. Petersen C, Gut J, Doyle PS, et al. Characterization of a >900,000-M(r) Cryptosporidium parvum sporozoite glycoprotein recognized by protective hyperimmune bovine colostral immunoglobulin. Infect Immun. 1992;60:5132–8.PubMedCentralPubMedGoogle Scholar
  168. Petersen H, Jianmin W, Katakam K, et al. Cryptosporidium and Giardia in Danish organic pig farms: seasonal and age-related variation in prevalence, infection intensity and species/genotypes. Vet Parasitol. 2015;214:29–39.  https://doi.org/10.1016/j.vetpar.2015.09.020.CrossRefPubMedGoogle Scholar
  169. Petry F, Jakobi V, Tessema TS. Host immune response to Cryptosporidium parvum infection. Exp Parasitol. 2010;126:304–9.  https://doi.org/10.1016/j.exppara.2010.05.022.CrossRefPubMedGoogle Scholar
  170. Piva S, Caffara M, Pasquali F, et al. Detection and quantification of Cryptosporidium oocysts in environmental surfaces of an equine perinatology unit. Prev Vet Med. 2016;131:67–74.  https://doi.org/10.1016/j.prevetmed.2016.04.012.CrossRefPubMedGoogle Scholar
  171. Plutzer J, Karanis P. Genetic polymorphism in Cryptosporidium species: an update. Vet Parasitol. 2009;165:187–99.  https://doi.org/10.1016/j.vetpar.2009.07.003.CrossRefPubMedGoogle Scholar
  172. Quílez J, Sánchez-Acedo C, Clavel A, et al. Prevalence of Cryptosporidium infections in pigs in Aragon (northeastern Spain). Vet Parasitol. 1996;67:83–8.  https://doi.org/10.1016/S0304-4017(96)01026-6.CrossRefPubMedGoogle Scholar
  173. Quilez J, Sanchez-Acedo C, Cacho E, et al. Efficacy of two peroxygen-based disinfectants for inactivation of Cryptosporidium parvum oocysts. Appl Environ Microbiol. 2005;71:2479–83.  https://doi.org/10.1128/AEM.71.5.2479.CrossRefPubMedCentralPubMedGoogle Scholar
  174. Quílez J, Torres E, Chalmers RM, et al. Cryptosporidium genotypes and subtypes in lambs and goat kids in Spain. Appl Environ Microbiol. 2008;74:6026–31.  https://doi.org/10.1128/AEM.00606-08.CrossRefPubMedCentralPubMedGoogle Scholar
  175. Rambozzi L, Menzano A, Mannelli A, et al. Prevalence of cryptosporidian infection in cats in Turin and analysis of risk factors. J Feline Med Surg. 2007;9:392–6.  https://doi.org/10.1016/j.jfms.2007.03.005.CrossRefPubMedGoogle Scholar
  176. Reduker DW, Speer CA, Blixt JA. Ultrastructure of Cryptosporidium parvum oocyst and excysting sporozoites as revealed by high resolution scanning electron microscopy. J Protozool. 1985;32:708–11.  https://doi.org/10.1111/j.1550-7408.1985.tb03106.x.CrossRefPubMedGoogle Scholar
  177. Répérant JM, Naciri M, Iochmann S, et al. Major antigens of Cryptosporidium parvum recognised by serum antibodies from different infected animal species and man. Vet Parasitol. 1994;55:1–13.  https://doi.org/10.1016/0304-4017(94)90051-5.CrossRefPubMedGoogle Scholar
  178. Robertson LJ, Campbell AT, Smith HV. Survival of Cryptosporidium parvum oocysts under various environmental pressures. Appl Environ Microbiol. 1992;58:3494–500.PubMedCentralPubMedGoogle Scholar
  179. Rosales MJ, Peréz Cordón G, Sánchez Moreno M, et al. Extracellular like-gregarine stages of Cryptosporidium parvum. Acta Trop. 2005;95:74–8.  https://doi.org/10.1016/j.actatropica.2005.03.009.CrossRefPubMedGoogle Scholar
  180. Ryan U. Cryptosporidium in birds, fish and amphibians. Exp Parasitol. 2010;124:113–20.  https://doi.org/10.1016/j.exppara.2009.02.002.CrossRefPubMedGoogle Scholar
  181. Ryan U, Hijjawi N. New developments in Cryptosporidium research. Int J Parasitol. 2015;45:367–73.  https://doi.org/10.1016/j.ijpara.2015.01.009.CrossRefGoogle Scholar
  182. Ryan UM, Monis P, Enemark HL, et al. Cryptosporidium suis n. sp. (Apicomplexa: Cryptosporidiidae) in pigs (Sus scrofa). J Parasitol. 2004;90:769–73.  https://doi.org/10.1645/GE-202R1.
  183. Ryan UM, Bath C, Robertson I, et al. Sheep may not be an important zoonotic reservoir for Cryptosporidium and Giardia parasites. Appl Environ Microbiol. 2005;71:4992–7.  https://doi.org/10.1128/AEM.71.9.4992-4997.2005.CrossRefPubMedCentralPubMedGoogle Scholar
  184. Ryan U, Paparini A, Monis P, Hijjawi N. It’s official—Cryptosporidium is a gregarine: what are the implications for the water industry? Water Res. 2016;105:305–13.  https://doi.org/10.1016/j.watres.2016.09.013.CrossRefGoogle Scholar
  185. Rzezutka A, Kaupke A, Kozyra I, Pejsak Z. Molecular studies on pig cryptosporidiosis in Poland. Pol J Vet Sci. 2014;17:577–82.  https://doi.org/10.2478/pjvs-2014-0086.CrossRefGoogle Scholar
  186. Sagodira S, Iochmann S, Mevelec MN, et al. Nasal immunization of mice with Cryptosporidium parvum DNA induces systemic and intestinal immune responses. Parasite Immunol. 1999;21:507–16.  https://doi.org/10.1046/j.1365-3024.1999.00247.x.CrossRefGoogle Scholar
  187. Sahal M, Karaer Z, Yasa Duru S, et al. Cryptosporidiosis in newborn calves in Ankara region: clinical, haematological findings and treatment with Lasalocid-NA. DTW Dtsch Tierärztliche Wochenschrift. 2005;112:203–8, 210Google Scholar
  188. Saime A, Tsipa MA, Bessong P. The epidemiology of cryptosporidium in cats and dogs in the Thohoyandou region, South Africa. Afr J Microbiol Res. 2013;7:2510–8.  https://doi.org/10.5897/AJMR12.1391.CrossRefGoogle Scholar
  189. Santin M. Clinical and subclinical infections with Cryptosporidium in animals. N Z Vet J. 2013;61:1–10.  https://doi.org/10.1080/00480169.2012.731681.CrossRefGoogle Scholar
  190. Santín M, Trout J. Companion animals. In: Ronald F, Lhiua X, editors. Cryptosporidium & cryptosporidiosis. 2nd ed. Boca Raton: CRC; 2008a. p. 437–50.Google Scholar
  191. Santín M, Trout J. Livestock. In: Fayer R, Xiao L, editors. Cryptosporidium & cryptosporidiosis. 2nd ed. Boca Raton: CRC; 2008b. p. 455–83.Google Scholar
  192. Santín M, Trout JM, Xiao L, et al. Prevalence and age-related variation of Cryptosporidium species and genotypes in dairy calves. Vet Parasitol. 2004;122:103–17.  https://doi.org/10.1016/j.vetpar.2004.03.020.CrossRefGoogle Scholar
  193. Santín M, Trout JM, Vecino JAC, et al. Cryptosporidium, Giardia and Enterocytozoon bieneusi in cats from Bogota (Colombia) and genotyping of isolates. Vet Parasitol. 2006;141:334–9.  https://doi.org/10.1016/j.vetpar.2006.06.004.CrossRefGoogle Scholar
  194. Santín M, Trout J, Fayer R. A longitudinal study of cryptosporidiosis in dairy cattle from birth to 2 years of age. Vet Parasitol. 2008;155:15–23.  https://doi.org/10.1016/j.vetpar.2008.04.018.CrossRefGoogle Scholar
  195. Sasahara T, Maruyama H, Aoki M, et al. Apoptosis of intestinal crypt epithelium after Cryptosporidium parvum infection. J Infect Chemother. 2003;9:278–81.  https://doi.org/10.1007/s10156-003-0259-1.CrossRefGoogle Scholar
  196. Savin C, Sarfati C, Menotti J, et al. Assessment of cryptodiag for diagnosis of cryptosporidiosis and genotyping Cryptosporidium species. J Clin Microbiol. 2008;46:2590–4.  https://doi.org/10.1128/JCM.00226-08.CrossRefPubMedCentralPubMedGoogle Scholar
  197. Schnyder M, Kohler L, Hemphill A, Deplazes P. Prophylactic and therapeutic efficacy of nitazoxanide against Cryptosporidium parvum in experimentally challenged neonatal calves. Vet Parasitol. 2009;160:149–54.  https://doi.org/10.1016/j.vetpar.2008.10.094.CrossRefGoogle Scholar
  198. Sevinç F, Şimşek A, Uslu U. Massive Cryptosporidium parvum infection associated with an outbreak of diarrhoea in neonatal goat kids. Turkish. J Vet Anim Sci. 2005;29:1317–20.Google Scholar
  199. Shahbazi P, Shayan P, Ebrahimzadeh E, Rahbari S. Specific egg yolk antibody against recombinant Cryptosporidium parvum P23 protein. Iran J Parasitol. 2009;4:15–24.Google Scholar
  200. Sibley LD. Intracellular parasite invasion strategies. Science. 2004;304:248–53.  https://doi.org/10.1126/science.1094717.CrossRefGoogle Scholar
  201. Silverlås C, Björkman C, Egenvall A. Systematic review and meta-analyses of the effects of halofuginone against calf cryptosporidiosis. Prev Vet Med. 2009a;91:73–84.  https://doi.org/10.1016/j.prevetmed.2009.05.003.CrossRefGoogle Scholar
  202. Silverlås C, Bosaeus-Reineck H, Näslund K, Björkman C. Is there a need for improved Cryptosporidium diagnostics in Swedish calves? Int J Parasitol. 2013;43(2):155–61.  https://doi.org/10.1016/j.ijpara.2012.10.009.CrossRefPubMedGoogle Scholar
  203. Silverlås C, Emanuelson U, de Verdier K, Björkman C. Prevalence and associated management factors of Cryptosporidium shedding in 50 Swedish dairy herds. Prev Vet Med. 2009b;90:242–53.  https://doi.org/10.1016/j.prevetmed.2009.04.006.CrossRefGoogle Scholar
  204. Šlapeta J. Cryptosporidium species found in cattle: a proposal for a new species. Trends Parasitol. 2006;22:469–74.CrossRefGoogle Scholar
  205. Šlapeta J. Cryptosporidiosis and Cryptosporidium species in animals and humans: a thirty colour rainbow? Int J Parasitol. 2013;43:957–70.  https://doi.org/10.1016/j.ijpara.2013.07.005.CrossRefPubMedGoogle Scholar
  206. Šlapeta J, Keithly J. Cryptosporidium parvum mitochondrial-type HSP70 targets homologous and heterologous mitochondria. Eukaryot Cell. 2004;3:483–94.  https://doi.org/10.1128/EC.3.2.483.CrossRefPubMedGoogle Scholar
  207. Šlapeta J. The name Cryptosporidium tyzzeri Ren, Zhao, Zhang, Ning, Jian, Wang, Lv, Wang, Arrowood and Xiao, 2012 is permanently invalid. Exp Parasitol. 2012;130:306–7.Google Scholar
  208. Šlapeta J, Müller N, Stack CM, Walker G, Lew-Tabor A, Tachezy J, Frey CF. Comparative analysis of Tritrichomonas foetus (Riedmuller, 1928) cat genotype, T. foetus (Riedmuller, 1928) cattle genotype and Tritrichomonas suis (Davaine, 1875) at 10 DNA loci. Int J Parasitol. 2012;42(13-14):1143–9.  https://doi.org/10.1016/j.ijpara.2012.10.004.CrossRefGoogle Scholar
  209. Smith H. OIE manual of diagnostic tests and vaccines for terrestrial animals. 6th ed. Paris: OIE; 2008a. p. 1192–215.Google Scholar
  210. Smith H. Diagnostics. In: Ronald F, Xiao L, editors. Cryptosporidium & cryptosporidiosis. 2nd ed. Boca Raton: CRC; 2008b. p. 173–208.Google Scholar
  211. Smith HV, Nichols RAB, Grimason AM. Cryptosporidium excystation and invasion: getting to the guts of the matter. Trends Parasitol. 2005;21:133–42.CrossRefPubMedGoogle Scholar
  212. Snelling WJ, Lin Q, Moore JE, et al. Proteomics analysis and protein expression during sporozoite excystation of Cryptosporidium parvum (Coccidia, Apicomplexa). Mol Cell Proteomics. 2007;6:346–55.  https://doi.org/10.1074/mcp.M600372-MCP200.CrossRefPubMedCentralPubMedGoogle Scholar
  213. Snyder SP, England JJ, McChesney AE. Cryptosporidiosis in immunodeficient Arabian foals. Vet Pathol. 1978;15:12–7.  https://doi.org/10.1177/030098587801500102.CrossRefPubMedGoogle Scholar
  214. Spano PC, Ranucci L, et al. Cloning of the entire COWP gene of Cryptosporidium parvum and ultrastructural localization of the protein during sexual parasite development. Parasitology. 1997;114:427–37.CrossRefPubMedGoogle Scholar
  215. Sréter T, Széll Z, Varga I. Anticryptosporidial prophylactic efficacy of enrofloxacin and paromomycin in chickens. J Parasitol. 2002;88:209–11.  https://doi.org/10.1645/0022-3395(2002)088[0209:APEOEA]2.0.CO;2.CrossRefPubMedGoogle Scholar
  216. Sturdee AP, Bodley-Tickell AT, Archer A, Chalmers RM. Long-term study of Cryptosporidium prevalence on a lowland farm in the United Kingdom. Vet Parasitol. 2003;116:97–113.  https://doi.org/10.1016/S0304-4017(03)00261-9.CrossRefPubMedGoogle Scholar
  217. Sweeny JPA, Ryan UM, Robertson ID, Jacobson C. Cryptosporidium and Giardia associated with reduced lamb carcase productivity. Vet Parasitol. 2011a;182:127–39.  https://doi.org/10.1016/j.vetpar.2011.05.050.CrossRefPubMedGoogle Scholar
  218. Sweeny JPA, Ryan UM, Robertson ID, et al. Longitudinal investigation of protozoan parasites in meat lamb farms in southern Western Australia. Prev Vet Med. 2011b;101:192–203.  https://doi.org/10.1016/j.prevetmed.2011.05.016.CrossRefPubMedGoogle Scholar
  219. Tarver AP, Clark DP, Diamond G, et al. Enteric beta-defensin: molecular cloning and characterization of a gene with inducible intestinal epithelial cell expression associated with Cryptosporidium parvum infection [published erratum appears in Infect Immun 1998 May;66(5):2399]. Infect Immun. 1998;66:1045–56.PubMedCentralPubMedGoogle Scholar
  220. Tessema T, Schwamb B, Lochner M, et al. Dynamics of gut mucosal and systemic Th1/Th2 cytokine responses in interferon-c and interleukin-12p40 knock out mice during primary and challenge Cryptosporidium parvum infection. Immunobiology. 2009;214:454–66.CrossRefGoogle Scholar
  221. Tetley L, Brown SMA, McDonald V, Coombs GH. Ultrastructural analysis of the sporozoite of Cryptosporidium parvum. Microbiology. 1998;144:3249–55.  https://doi.org/10.1099/00221287-144-12-3249.CrossRefGoogle Scholar
  222. Thompson RCA, Olson ME, Zhu G, et al. Cryptosporidium and cryptosporidiosis. Adv Parasitol. 2005;59:77–158.  https://doi.org/10.1016/S0065-308X(05)59002-X.CrossRefGoogle Scholar
  223. Thompson RCA, Koh WH, Clode PL. Cryptosporidium—what is it? Food Waterborne Parasitol. 2016;4:54–61.  https://doi.org/10.1016/j.fawpar.2016.08.004.CrossRefGoogle Scholar
  224. Tomazic ML, Maidana J, Dominguez M, et al. Molecular characterization of Cryptosporidium isolates from calves in Argentina. Vet Parasitol. 2013;198:382–6.  https://doi.org/10.1016/j.vetpar.2013.09.022.CrossRefGoogle Scholar
  225. Trotz-Williams LA, Jarvie BD, Martin SW, et al. Prevalence of Cryptosporidium parvum infection in southwestern Ontario and its association with diarrhea in neonatal dairy calves. Can Vet J. 2005;46:349–51.PubMedCentralPubMedGoogle Scholar
  226. Trotz-Williams LA, Wayne Martin S, Leslie KE, et al. Calf-level risk factors for neonatal diarrhea and shedding of Cryptosporidium parvum in Ontario dairy calves. Prev Vet Med. 2007;82:12–28.  https://doi.org/10.1016/j.prevetmed.2007.05.003.CrossRefGoogle Scholar
  227. Trotz-Williams LA, Martin SW, Leslie KE, et al. Association between management practices and within-herd prevalence of Cryptosporidium parvum shedding on dairy farms in southern Ontario. Prev Vet Med. 2008;83:11–23.  https://doi.org/10.1016/j.prevetmed.2007.03.001.CrossRefGoogle Scholar
  228. Tůmová E, Skřivan M, Marounek M, et al. Performance and oocyst shedding in broiler chickens orally infected with Cryptosporidium baileyi and Cryptosporidium meleagridis. Avian Dis. 2002;46:203–7.  https://doi.org/10.1637/0005-2086(2002)046[0203:Paosib]2.0.Co;2.CrossRefGoogle Scholar
  229. Tyzzer EE. Cryptosporidium parvum (sp. nov.), a coccidium found in the small intestine of the common mouse. Arch Protisenkd. 1912;26:394–412.Google Scholar
  230. Tzipori S. Cryptosporidiosis in animals and humans. Microbiol Rev. 1983;47:84–96.PubMedCentralPubMedGoogle Scholar
  231. Ungar BLP, Kao TC, Burris JA, Finkelman FD. Cryptosporidium infection in an adult-mouse model—independent roles for Ifn-gamma and Cd4+ lymphocytes-T in protective immunity. J Immunol. 1991;147:1014–22.Google Scholar
  232. Valigurová A, Jirků M, Koudela B, et al. Cryptosporidia: epicellular parasites embraced by the host cell membrane. Int J Parasitol. 2008;38:913–22.  https://doi.org/10.1016/j.ijpara.2007.11.003.CrossRefGoogle Scholar
  233. Veronesi F, Passamonti F, Cacciò S, et al. Epidemiological survey on equine Cryptosporidium and Giardia infections in Italy and molecular characterization of isolates. Zoonoses Public Health. 2010;57:510–7.  https://doi.org/10.1111/j.1863-2378.2009.01261.x.CrossRefGoogle Scholar
  234. Viel H, Rocques H, Martin JCC. Efficacy of nitazoxanide against experimental cryptosporidiosis in goat neonates. Parasitol Res. 2007;102:163–6.  https://doi.org/10.1007/s00436-007-0744-z.CrossRefGoogle Scholar
  235. Vítovec J, Hamadejová K, Landová L, et al. Prevalence and pathogenicity of Cryptosporidium suis in pre- and post-weaned pigs. J Vet Med B Infect Dis Vet Public Health. 2006;53:239–43.  https://doi.org/10.1111/j.1439-0450.2006.00950.x.CrossRefGoogle Scholar
  236. Viu M, Quílez J, Sánchez-Acedo C, et al. Field trial on the therapeutic efficacy of paromomycin on natural Cryptosporidium parvum infections in lambs. Vet Parasitol. 2000;90:163–70.  https://doi.org/10.1016/S0304-4017(00)00241-7.CrossRefGoogle Scholar
  237. Wagner S, Lynch NJ, Walter W, et al. Differential expression of the murine mannose-binding lectins A and C in lymphoid and nonlymphoid organs and tissues. J Immunol. 2003;170:1462–5.CrossRefGoogle Scholar
  238. Wanyiri JW, O’Connor R, Allison G, et al. Proteolytic processing of the Cryptosporidium glycoprotein gp40/15 by human furin and by a parasite-derived furin-like protease activity. Infect Immun. 2007;75:184–92.  https://doi.org/10.1128/IAI.00944-06.CrossRefGoogle Scholar
  239. Weir SC, Pokorny NJ, Carreno RA, et al. Efficacy of common laboratory disinfectants on the infectivity of Cryptosporidium parvum oocysts in cell culture. Appl Environ Microbiol. 2002;68:2576–9.  https://doi.org/10.1128/AEM.68.5.2576-2579.2002.CrossRefPubMedCentralPubMedGoogle Scholar
  240. Wetzel DM, Schmidt J, Kuhlenschmidt MS, et al. Gliding motility leads to active cellular invasion by Cryptosporidium parvum sporozoites. Infect Immun. 2005;73:5379–87.  https://doi.org/10.1128/IAI.73.9.5379-5387.2005.CrossRefPubMedCentralPubMedGoogle Scholar
  241. Widmer G, Lee Y. Comparison of single- and multilocus genetic diversity in the protozoan parasites Cryptosporidium parvum and C. hominis. Appl Environ Microbiol. 2010;76:6639–44.  https://doi.org/10.1128/AEM.01268-10.CrossRefPubMedCentralPubMedGoogle Scholar
  242. Wilson R, Holscher M, Lyle S. Cryptosporidiosis in a pup. J Am Vet Med Assoc. 1983;183:1005–6, 965PubMedGoogle Scholar
  243. Wyatt CR, Brackett EJ, Perryman LE, et al. Activation of intestinal intraepithelial T lymphocytes in calves infected with Cryptosporidium parvum. Infect Immun. 1997;65:185–90.PubMedCentralPubMedGoogle Scholar
  244. Wyatt C, Brackett E, Savidge J. Evidence for the emergence of a type-1-like immune response in intestinal mucosa of calves recovering from cryptosporidiosis. J Parasitol. 2001;87:90–5.  https://doi.org/10.1645/0022-3395(2001)087[0090:EFTEOA]2.0.CO;2.CrossRefPubMedGoogle Scholar
  245. Wyatt CR, Lindahl S, Austin K, et al. Response of T lymphocytes from previously infected calves to recombinant Cryptosporidium parvum P23 vaccine antigen. J Parasitol. 2005;91:1239–42.  https://doi.org/10.1645/GE-3446RN.1.CrossRefPubMedGoogle Scholar
  246. Wyatt CR, Riggs MW, Fayer R. Cryptosporidiosis in neonatal calves. Vet Clin North Am Food Anim Pract. 2010;26:89–103.  https://doi.org/10.1016/j.cvfa.2009.10.001.CrossRefPubMedGoogle Scholar
  247. Xiao L. Molecular epidemiology of cryptosporidiosis: an update. Exp Parasitol. 2010;124:80–9.  https://doi.org/10.1016/j.exppara.2009.03.018.CrossRefPubMedGoogle Scholar
  248. Xiao L, Herd RP. Epidemiology of equine Cryptosporidium and Giardia infections. Equine Vet J. 1994;26:14–7.  https://doi.org/10.1111/j.2042-3306.1994.tb04323.x.CrossRefPubMedGoogle Scholar
  249. Xiao L, Escalante L, Yang C, et al. Phylogenetic analysis of Cryptosporidium parasites based on the small-subunit rRNA gene locas. Appl Environ Microbiol. 1999;65:1578–83.PubMedCentralPubMedGoogle Scholar
  250. Xiao L, Bern C, Limor J, et al. Identification of 5 types of Cryptosporidium parasites in children in Lima, Peru. J Infect Dis. 2001;183:492–7.  https://doi.org/10.1086/318090.CrossRefPubMedGoogle Scholar
  251. Xiao L, Fayer R, Ryan U, Upton SJ. Cryptosporidium taxonomy: recent advances and implications for public health. Clin Microbiol Rev. 2004;17:72–97.CrossRefPubMedGoogle Scholar
  252. Xiao L, Moore JE, Ukoh U, et al. Prevalence and identity of Cryptosporidium spp. in pig slurry. Appl Environ Microbiol. 2006;72:4461–3.  https://doi.org/10.1128/AEM.00370-06.CrossRefPubMedCentralPubMedGoogle Scholar
  253. Xiao L, Ryan UM, Fayer R, Bowman DD, Zhang L. Cryptosporidium tyzzeri and Cryptosporidium pestis: Which name is valid? Exp Parasitol. 2012;130:308–9.CrossRefGoogle Scholar
  254. Xu H, Jin Y, Wu W, et al. Genotypes of Cryptosporidium spp., Enterocytozoon bieneusi and Giardia duodenalis in dogs and cats in Shanghai, China. Parasit Vectors. 2016;9:121.  https://doi.org/10.1186/s13071-016-1409-5.CrossRefPubMedCentralPubMedGoogle Scholar
  255. Yang R, Jacobson C, Gordon C, Ryan U. Prevalence and molecular characterisation of Cryptosporidium and Giardia species in pre-weaned sheep in Australia. Vet Parasitol. 2009;161:19–24.  https://doi.org/10.1016/j.vetpar.2008.12.021.CrossRefPubMedGoogle Scholar
  256. Yang R, Ying J, Monis P, Ryan U. Molecular characterisation of Cryptosporidium and Giardia in cats (Felis catus) in Western Australia. Exp Parasitol. 2015;155:13–8.  https://doi.org/10.1016/j.exppara.2015.05.001.CrossRefPubMedGoogle Scholar
  257. Yoshiuchi R, Matsubayashi M, Kimata I, et al. Survey and molecular characterization of Cryptosporidium and Giardia spp. in owned companion animal, dogs and cats, in Japan. Vet Parasitol. 2010;174:313–6.  https://doi.org/10.1016/j.vetpar.2010.09.004.CrossRefPubMedGoogle Scholar
  258. Zaalouk TK, Bajaj-Elliott M, George JT, McDonald V. Differential regulation of beta-defensin gene expression during Cryptosporidium parvum infection. Infect Immun. 2004;72:2772–9.  https://doi.org/10.1128/IAI.72.5.2772-2779.2004.CrossRefPubMedCentralPubMedGoogle Scholar
  259. Zintl A, Neville D, Maguire D, et al. Prevalence of Cryptosporidium species in intensively farmed pigs in Ireland. Parasitology. 2007;134:1575–82.  https://doi.org/10.1017/S0031182007002983.CrossRefPubMedGoogle Scholar
  260. Zou Y, Ma J, Yue D, et al. Prevalence and risk factors of Cryptosporidium infection in farmed pigs in Zhejiang, Guangdong, and Yunnan provinces, China. Trop Anim Health Prod. 2017;49:653–9.  https://doi.org/10.1007/s11250-017-1230-y.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mariela L. Tomazic
    • 1
    • 2
  • Carlos Garro
    • 1
  • Leonhard Schnittger
    • 1
    • 2
    • 3
  1. 1.Institute of Pathobiology, Center for Research on Veterinary and Agronomic Sciences (CICVyA), National Institute of Agricultural Technology (INTA-Argentina)HurlinghamArgentina
  2. 2.National Council of Scientific and Technological Research (CONICET)Godoy CruzArgentina
  3. 3.School of Exact, Chemical and Natural Sciences (FCEQN)University of MorónMorónArgentina

Personalised recommendations