Patient Specific Instrumentation

  • Kyong S. Min
  • Henry M. Fox
  • Jon J. P. WarnerEmail author


Shoulder arthroplasty has become a reliable and effective method to treat arthritis, fracture, nonunion, malunion, tumor and rotator cuff arthropathy. According to the Agency of Healthcare Research and Quality, in 2011 there were 53,000 shoulder replacement procedures performed in the United States. The prevalence of these procedures continues to increase [1, 2]. Between 1993 and 2007 the annual growth rate for total shoulder arthroplasty was 10.6%, with an annual growth rate in revision of 14.0% [1]. These increasing rates of shoulder arthroplasty are in contrast with rates of lower extremity arthroplasty. Between 1990 and 2002, primary and revision total knee arthroplasty volumes were shown to grow annually at rates of 6–7%. Primary and revision total hip arthroplasties increased yearly at rates of 4.5% and 2.5%, respectively [3].


Patient specific instrumentation Patient specific planning Custom shoulder arthroplasty/replacement Virtual surgery 


  1. 1.
    Day JS, Lau E, Ong KL, Williams GR, Ramsey ML, Kurtz SM. Prevalence and projections of total shoulder and elbow arthroplasty in the United States to 2015. J Shoulder Elb Surg. 2010;19(8):1115–20.CrossRefGoogle Scholar
  2. 2.
    Kim SH, Wise BL, Zhang Y, Szabo RM. Increasing incidence of shoulder arthroplasty in the United States. J Bone Joint Surg Am. 2011;93(24):2249–54.CrossRefGoogle Scholar
  3. 3.
    Kurtz S, Mowat F, Ong K, Chan N, Lau EHM. Prevalence of primary and revision total hip and knee arthroplasty in the United States from 1990 through 2002. J Bone Joint Surg Am. 2005;87(7):1487.PubMedGoogle Scholar
  4. 4.
    Kempton LB, Ankerson E, Wiater JM. A complication-based learning curve from 200 reverse shoulder arthroplasties. Clin Orthop Relat Res. 2011;469(9):2496–504.CrossRefGoogle Scholar
  5. 5.
    Riedel BB, Mildren ME, Jobe CM, Wongworawat MD, Phipatanakul WP. Evaluation of the learning curve for reverse shoulder arthroplasty. Orthopedics. 2010;16:237–41.Google Scholar
  6. 6.
    Jain N, Pietrobon R, Hocker S, Guller U, Shankar AHL. The relationship between surgeon and hospital volume and outcomes for shoulder arthroplasty. J Bone Joint Surg Am. 2004;86(3):496–505.CrossRefGoogle Scholar
  7. 7.
    Singh A, Yian EH, Dillon MT, Takayanagi M, Burke MF, Navarro RA. The effect of surgeon and hospital volume on shoulder arthroplasty perioperative quality metrics. J Shoulder Elb Surg. 2014;23(8):1187–94.CrossRefGoogle Scholar
  8. 8.
    Hasan SS, Leith JM, Smith KLMF. The distribution of shoulder replacement among surgeons and hospitals is significantly different than that of hip or knee replacement. J Shoulder Elb Surg. 2003;12(2):164–9.CrossRefGoogle Scholar
  9. 9.
    Sassoon A, Nam D, Nunley R, Barrack R. ystematic Review of Patient-specific Instrumentation in Total Knee Arthroplasty: New but Not Improved. Clin Orthop Relat Res. 2015;473(1):151–8.PubMedGoogle Scholar
  10. 10.
    Venkatesan M, Mahadevan D, Ashford R. Computer-assisted navigation in knee arthroplasty: a critical appraisal. J Knee Surg. 2013;26(5):357–62.CrossRefGoogle Scholar
  11. 11.
    Farron A, Terrier A, Büchler P. Risks of loosening of a prosthetic glenoid implanted in retroversion. J Shoulder Elb Surg. 2006;15(4):521–6.CrossRefGoogle Scholar
  12. 12.
    Moor BK, Bouaicha S, Rothenfluh DA, Sukthankar A, Gerber C. Is there an association between the individual anatomy of the scapula and the development of rotator cuff tears or osteoarthritis of the glenohumeral joint?: A radiological study of the critical shoulder angle. Bone Joint J. 2013;95–B(7):935–41.CrossRefGoogle Scholar
  13. 13.
    Denard PJ, Walch G. Current concepts in the surgical management of primary glenohumeral arthritis with a biconcave glenoid. J Shoulder Elb Surg. 2013;22(11):1589–98.CrossRefGoogle Scholar
  14. 14.
    Walch G, Young AA, Boileau P, Loew M, Gazielly D, Molé D. Patterns of loosening of polyethylene keeled glenoid components after shoulder arthroplasty for primary osteoarthritis. J Bone Joint Surg Am. 2012;94(2):145–50.CrossRefGoogle Scholar
  15. 15.
    Gonzalez J-F, Alami GB, Baque F, Walch G, Boileau P. Complications of unconstrained shoulder prostheses. J Shoulder Elb Surg. 2011;20(4):666–82.CrossRefGoogle Scholar
  16. 16.
    Papadonikolakis A, Neradilek MB, Matsen FA. Failure of the glenoid component in anatomic total shoulder arthroplasty. J Bone Joint Surg Am. 2013;95(24):2205–12.CrossRefGoogle Scholar
  17. 17.
    Karelse A, Van Tongel A, Verstraeten T, Poncet D, De Wilde LF. Rocking-horse phenomenon of the glenoid component: the importance of inclination. J Shoulder Elb Surg. 2015;24(7):1142–8.CrossRefGoogle Scholar
  18. 18.
    Young AA, Walch G, Pape G, Gohlke F, Favard L. Secondary rotator cuff dysfunction following total shoulder arthroplasty for primary glenohumeral osteoarthritis: results of a multicenter study with more than five years of follow-up. J Bone Joint Surg Am. 2012;94(8):685–93.CrossRefGoogle Scholar
  19. 19.
    Nyffeler RW, Sheikh R, Atkinson TS, Jacob HAC, Favre P, Gerber C. Effects of glenoid component version on humeral head displacement and joint reaction forces: an experimental study. J Shoulder Elb Surg. 2006;15(5):625–9.CrossRefGoogle Scholar
  20. 20.
    Shapiro TA, McGarry MH, Gupta R, Lee YS, Lee TQ. Biomechanical effects of glenoid retroversion in total shoulder arthroplasty. J Shoulder Elb Surg. 2007;16(3):S90–5.CrossRefGoogle Scholar
  21. 21.
    Ho JC, Sabesan VJ, Iannotti JP. Glenoid component retroversion is associated with Osteolysis. J Bone Joint Surg Am. 2013;95(12):e82. 1–8.CrossRefGoogle Scholar
  22. 22.
    Tetreault P, Krueger A, Zurakowski D, Gerber C. Glenoid version and rotator cuff tears. J Orthop Res. 2004;22(1):202–7.CrossRefGoogle Scholar
  23. 23.
    Walch G, Moraga C, Young A, Castellanos-Rosas J. Results of anatomic nonconstrained prosthesis in primary osteoarthritis with biconcave glenoid. J Shoulder Elb Surg. 2012;21(11):1526–33.CrossRefGoogle Scholar
  24. 24.
    Bercik MJ, Kruse K, Yalizis M, Gauci M-O, Chaoui J, Walch G. A modification to the Walch classification of the glenoid in primary glenohumeral osteoarthritis using three-dimensional imaging. J Shoulder Elb Surg. 2016;25(10):1601–6.CrossRefGoogle Scholar
  25. 25.
    Friedman RJ, Hawthorne KBGB. The use of computerized tomography in the measurement of glenoid version. J Bone Joint Surg Am. 1992;74(7):1032–7.CrossRefGoogle Scholar
  26. 26.
    Rouleau DM, Kidder JF, Pons-Villanueva J, Dynamidis S, Defranco M, Walch G. Glenoid version: how to measure it? Validity of different methods in two-dimensional computed tomography scans. J Shoulder Elb Surg. 2010;19(8):1230–7.CrossRefGoogle Scholar
  27. 27.
    Randelli MGP. Glenohumeral osteometry by computed tomography in normal and unstable shoulders. Clin Orthop Relat Res. 1986;208:151–6.Google Scholar
  28. 28.
    Iannotti JP, Weiner S, Rodriguez E, Subhas N, Patterson TE, Jun BJ, et al. Three-dimensional imaging and templating improve glenoid implant positioning. J Bone Joint Surg Am. 2015;97(8):651–8.CrossRefGoogle Scholar
  29. 29.
    Scalise JJ, Codsi MJ, Bryan J, Brems JJ, Iannotti JP. The influence of three-dimensional computed tomography images of the shoulder in preoperative planning for total shoulder arthroplasty. J Bone Joint Surg Am. 2008;90(11):2438–45.CrossRefGoogle Scholar
  30. 30.
    Budge MD, Lewis GS, Schaefer E, Coquia S, Flemming DJ, Armstrong AD. Comparison of standard two-dimensional and three-dimensional corrected glenoid version measurements. J Shoulder Elb Surg. 2011;20(4):577–83.CrossRefGoogle Scholar
  31. 31.
    Jacxsens M, Van Tongel A, Willemot LB, Mueller AM, Valderrabano V, De Wilde L. Accuracy of the glenohumeral subluxation index in nonpathologic shoulders. J Shoulder Elb Surg. 2015;24(4):541–6.CrossRefGoogle Scholar
  32. 32.
    Terrier A, Ston J, Farron A. Importance of a three-dimensional measure of humeral head subluxation in osteoarthritic shoulders. J Shoulder Elb Surg. 2015;24(2):295–301.CrossRefGoogle Scholar
  33. 33.
    Hendel MD, Bryan JA, Barsoum WK, Rodriguez EJ, Brems JJ, Evans PJ, et al. Comparison of patient-specific instruments with standard surgical instruments in determining glenoid component position. J Bone Joint Surg Am. 2012;94(23):2167–75.CrossRefGoogle Scholar
  34. 34.
    Throckmorton TW, Gulotta LV, Bonnarens FO, Wright SA, Hartzell JL, Rozzi WB, et al. Patient-specific targeting guides compared with traditional instrumentation for glenoid component placement in shoulder arthroplasty: a multi-surgeon study in 70 arthritic cadaver specimens. J Shoulder Elb Surg. 2015;24(6):965–71.CrossRefGoogle Scholar
  35. 35.
    Boileau P, Watkinson DJ, Hatzidakis AM, Balg F. Grammont reverse prosthesis: design, rationale, and biomechanics. J Shoulder Elb Surg. 2005;14(1):S147–61.CrossRefGoogle Scholar
  36. 36.
    Boileau P, Watkinson D, Hatzidakis AM, Hovorka I. Neer award 2005: the Grammont reverse shoulder prosthesis: results in cuff tear arthritis, fracture sequelae, and revision arthroplasty. J Shoulder Elb Surg. 2006;15(5):527–40.CrossRefGoogle Scholar
  37. 37.
    Walch G, Vezeridis PS, Boileau P, Deransart P, Chaoui J. Three-dimensional planning and use of patient-specific guides improve glenoid component position: an in vitro study. J Shoulder Elb Surg. 2015;24(2):302–9.CrossRefGoogle Scholar
  38. 38.
    Boileau P, Moineau G, Roussanne Y, O’Shea K. Bony increased-offset reversed shoulder arthroplasty: minimizing scapular impingement while maximizing glenoid fixation. Clin Orthop Relat Res. 2011;469(9):2558–67.CrossRefGoogle Scholar
  39. 39.
    Lopiz Y, García-Fernández C, Arriaza A, Rizo B, Marcelo H, Marco F. Midterm outcomes of bone grafting in glenoid defects treated with reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2017;26:1581–8.CrossRefGoogle Scholar
  40. 40.
    Virani NA, Cabezas A, Gutiérrez S, Santoni BG, Otto R, Frankle M. Reverse shoulder arthroplasty components and surgical techniques that restore glenohumeral motion. J Shoulder Elb Surg. 2013;22(2):179–87.CrossRefGoogle Scholar
  41. 41.
    Levy JC, Everding NG, Frankle MA, Keppler LJ. Accuracy of patient-specific guided glenoid baseplate positioning for reverse shoulder arthroplasty. J Shoulder Elb Surg. 2014;23(10):1563–7.CrossRefGoogle Scholar
  42. 42.
    Heylen S, Van Haver A, Vuylsteke K, Declercq G, Verborgt O. Patient-specific instrument guidance of glenoid component implantation reduces inclination variability in total and reverse shoulder arthroplasty. J Shoulder Elb Surg. 2016;25(2):186–92.CrossRefGoogle Scholar
  43. 43.
    Yu S, Zuckerman JD. Orthopedics in US Health Care. Am J Orthop (Belle Mead NJ). 2015;44(12):538–41.Google Scholar
  44. 44.
    Porter ME, Lee TH. The strategy that will fix healthcare. Harv Bus Rev. 2013;91(10):50–70.Google Scholar
  45. 45.
    Porter ME, Lee TH. From volume to value in health care. JAMA. 2016;316(10):1047–8.CrossRefGoogle Scholar
  46. 46.
    Porter ME, Kaplan RS. How to pay for health care. Harv Bus Rev. 2016;94:1–13.Google Scholar
  47. 47.
    Gillespie R, Lyons R, Lazarus M. Eccentric reaming in total shoulder arthroplasty: a cadaveric study. Orthopedics. 2009;32(1):21–6.CrossRefGoogle Scholar
  48. 48.
    Clavert P, Millett PJ, Warner JJP. Glenoid resurfacing: what are the limits to asymmetric reaming for posterior erosion? J Shoulder Elb Surg. 2007;16(6):843–8.CrossRefGoogle Scholar
  49. 49.
    Nowak DD, Bahu MJ, Gardner TR, Dyrszka MD, Levine WN, Bigliani LU, et al. Simulation of surgical glenoid resurfacing using three-dimensional computed tomography of the arthritic glenohumeral joint: the amount of glenoid retroversion that can be corrected. J Shoulder Elb Surg. 2009;18(5):680–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kyong S. Min
    • 1
    • 2
  • Henry M. Fox
    • 2
  • Jon J. P. Warner
    • 2
    Email author
  1. 1.Department of OrthopaedicsTripler Army Medical CenterHonoluluUSA
  2. 2.Department of OrthopaedicsMassachusetts General HospitalBostonUSA

Personalised recommendations