Skip to main content

Metal Augments in Shoulder Arthroplasty

  • Chapter
  • First Online:
  • 889 Accesses

Abstract

Severe glenoid bone loss is encountered in a subset of patients with different shoulder pathologies (i.e. osteoarthritis, rotator cuff arthropathy, inflammatory arthritis, failed primary arthroplasty, etc.) managed with shoulder arthroplasty. It creates a challenge for the shoulder reconstructive surgeon due to difficulty in restoring the normal glenoid bony anatomy, achieving stable fixation of the glenoid component, and is associated with increased complications and poor clinical outcomes. Current surgical techniques to reconstruct glenoid bone loss including eccentric reaming and/or bone grafting have limitations in severe cases. Porous metal augments (PMA) have been proposed as a potential solution because of their biomechanical properties similar to cancellous bone, reliable bone ingrowth, and provide stable fixation of orthopaedic implants. Extensive integration of PMA’s for the management of bone loss in hip and knee arthroplasty has yielded positive mid-term results and provides an optimistic future in shoulder arthroplasty. This chapter will outline the background of PMA’s and potential utilization in the management of severe glenoid bone loss in primary and revision shoulder arthroplasty.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Benazzo F, Botta L, Scaffino MF, Caliogna L, Marullo M, Fusi S, et al. Trabecular titanium can induce in vitro osteogenic differentiation of human adipose derived stem cells without osteogenic factors. J Biomed Mater Res A. 2014;102A:2061–71. https://doi.org/10.1002/jbm.a.34875.

    Article  CAS  Google Scholar 

  2. Bobyn JD, Stackpool GJ, Hacking SA, Tanzer M, Krygier JJ. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg Br. 1999;81B:907–14.

    Google Scholar 

  3. Boileau P, Moineau G, Morin-Salvo N, Avidor C, Godenèche A, Lévigne C, et al. Metal-backed glenoid implant with polyethylene insert is not a viable long-term therapeutic option. J Shoulder Elb Surg. 2015;24:1534–43. https://doi.org/10.1016/j.jse.2015.02.012.

    Article  Google Scholar 

  4. Castagna A, Randelli M, Garofalo R, Maradei L, Giardella A, Borroni M. Mid-term results of a metal-backed glenoid component in total shoulder replacement. J Bone Joint Surg Br. 2010;92:1410–5. https://doi.org/10.1302/0301-620X.92B10.23578.

    Article  CAS  PubMed  Google Scholar 

  5. Cil A, Sperling JW, Cofield RH. Nonstandard glenoid components for bone deficiencies in shoulder arthroplasty. J Shoulder Elb Surg. 2014;23:e149–57. https://doi.org/10.1016/j.jse.2013.09.023.

    Article  Google Scholar 

  6. Clavert P, Millett PJ, Warner JJ. Glenoid resurfacing: what are the limits to asymmetric reaming for posterior erosion? J Shoulder Elb Surg. 2007;16:843–8.

    Article  Google Scholar 

  7. Derome P, Sternheim A, Backstein D, Malo M. Treatment of large bone defects with trabecular metal cones in revision total knee arthroplasty: short term clinical and radiographic outcomes. J Arthroplast. 2014;29:122–6. https://doi.org/10.1016/j.arth.2013.04.033.

    Article  Google Scholar 

  8. Devine D, Arens D, Burelli S, Bloch HR, Boure L. In vivo evaluation of the osteointegration of new highly porous Trabecular Titanium™. J Bone Joint Surg Br. 2012;94-B(Supp 37):201.

    Google Scholar 

  9. Frankle MA, Siegal S, Pupello DR, Gutierrez S, Griewe M, Mighell M. Coronal plane tilt angle affects risk of catastrophic failure in patients treated with a reverse shoulder prosthesis. J Shoulder Elb Surg. 2007;16:e46. https://doi.org/10.1016/j.jse.2007.02.096.

    Article  Google Scholar 

  10. Frankle M, Teramoto A, Luo ZP, Levy JC, Pupello D. Glenoid morphology in reverse shoulder arthroplasty: classification and surgical implications. J Shoulder Elb Surg. 2009;18:874–85. https://doi.org/10.1016/j.jse.2009.02.013.

    Article  Google Scholar 

  11. Friedman RJ, Hawthorne KB, Genez BM. The use of computerized tomography in the measurement of glenoid version. J Bone Joint Surg Am. 1992;74:1032–7.

    Article  CAS  Google Scholar 

  12. Gilot GJ. Addressing glenoid erosion in reverse total shoulder arthroplasty. Bull Hosp Jt Dis. 2013;71(Suppl 2):51–3.

    Google Scholar 

  13. Gonzalez JF, Alami GB, Baque F, Walch G, Boileau P. Complications of unconstrained shoulder prostheses. J Shoulder Elb Surg. 2011;20:666–82. https://doi.org/10.1016/j.jse.2010.11.017.

    Article  Google Scholar 

  14. Gowda A, Pinkas D, Wiater JM. Treatment of glenoid bone deficiency in Total shoulder arthroplasty a critical analysis review. JBJS Rev. 2015;3:3–11. https://doi.org/10.2106/jbjs.rvw.n.00097.

    Article  Google Scholar 

  15. Gregory TM, Sankey A, Augereau B, Vandenbussche E, Amis A, Emery R, et al. Accuracy of glenoid component placement in total shoulder arthroplasty and its effect on clinical and radiological outcome in a retrospective, longitudinal, monocentric open study. PLoS One. 2013;8:e75791. https://doi.org/10.1371/journal.pone.0075791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gutierrez S, Greiwe RM, Frankle MA, Siegal S, Lee WE III. Biomechanical comparison of component position and hardware failure in the reverse shoulder prosthesis. J Shoulder Elb Surg. 2007;16(Suppl 3):9–12.

    Article  Google Scholar 

  17. Hanc M, Fokter SK, Vogrin M, Molicnik A, Recnik G, Hill JM, et al. Porous tantalum in spinal surgery: an overview. Eur J Orthop Surg Traumatol. 2016;26:1–7. https://doi.org/10.1007/s00590-015-1654-x.

    Article  PubMed  Google Scholar 

  18. Hill JM, Norris TR. Long-term results of total shoulder arthroplasty following bone-grafting of the glenoid. J Bone Joint Surg Am. 2001;83:877–83.

    Article  Google Scholar 

  19. Ho JC, Sabesan VJ, Iannotti JP. Glenoid component retroversion is associated with osteolysis. J Bone Joint Surg Am. 2013;95:e82. https://doi.org/10.2106/JBJS.L.00336.

    Article  PubMed  Google Scholar 

  20. Iannotti JP, Greeson C, Downing D. Effect of glenoid deformity on glenoid component placement in primary shoulder arthroplasty. J Shoulder Elb Surg. 2012;21:48–55. https://doi.org/10.1016/j.jse.2011.02.011.

    Article  Google Scholar 

  21. Jain NB, Yamaguchi K. The contribution of reverse shoulder arthroplasty to utilization of primary shoulder arthroplasty. J Shoulder Elb Surg. 2014;23:1905–12. https://doi.org/10.1016/j.jse.2014.06.055.

    Article  Google Scholar 

  22. Jones RB, Wright TW, Roche CP. Bone grafting the glenoid versus use of augmented glenoid baseplates with reverse shoulder arthroplasty. Bull Hosp Jt Dis. 2015;73(Suppl 1):129–35.

    Google Scholar 

  23. Kamath AF, Lewallen DG, Hanssen AD. Porous tantalum metaphyseal cones for severe Tibial bone loss in revision knee arthroplasty: a five to nine-year follow-up. J Bone Joint Surg Am. 2015;97:216–23. https://doi.org/10.2106/JBJS.N.00540.

    Article  PubMed  Google Scholar 

  24. Klein SM, Dunning P, Mulieri P, Pupello D, Downes K, Frankle MA. Effects of acquired glenoid bone defects on surgical technique and clinical outcomes in reverse shoulder arthroplasty. J Bone Joint Surg Am. 2010;92:1144–54. https://doi.org/10.2106/JBJS.I.00778.

    Article  PubMed  Google Scholar 

  25. Klika BJ, Wooten CW, Sperling JW, Steinmann SP, Schleck CD, Harmsen WS, et al. Structural bone grafting for glenoid deficiency in primary total shoulder arthroplasty. J Shoulder Elb Surg. 2014;23:1066–72. https://doi.org/10.1016/j.jse.2013.09.017.

    Article  Google Scholar 

  26. Knowles NK, Ferreira LM, Athwal GS. Augmented glenoid component designs for type B2 erosions: a computational comparison by volume of bone removal and quality of remaining bone. J Shoulder Elb Surg. 2015;24:1218–26. https://doi.org/10.1016/j.jse.2014.12.018.

    Article  Google Scholar 

  27. Lévigne C, Boileau P, Favard L, Garaud P, Mole D, Sirveaux F, et al. Scapular notching in reverse shoulder arthroplasty. J Shoulder Elb Surg. 2008;17:925–35. https://doi.org/10.1016/j.jse.2008.02.010.

    Article  Google Scholar 

  28. Lévigne C, Franceschi J. Rheumatoid arthritis of the shoulder: radiological presentation and results of arthroplasty. In: Walch G, Boileau P, editors. Shoulder arthroplasty. Berlin: Springer-Verlag; 1999. p. 221–30.

    Chapter  Google Scholar 

  29. Levine B, Della Valle CJ, Jacobs JJ. Applications of porous tantalum in total hip arthroplasty. J Am Acad Orthop Surg. 2006;14:646–55.

    Article  Google Scholar 

  30. Matassi F, Botti A, Sirleo L, Carulli C, Innocenti M. Porous metal for orthopedic implants. Clin Cases Miner Bone Metab. 2013;10:111–5.

    PubMed  PubMed Central  Google Scholar 

  31. Mizuno N, Denard PJ, Raiss P, Walch G. Reverse total shoulder arthroplasty for primary glenohumeral osteoarthritis in patients with a biconcave glenoid. J Bone Joint Surg Am. 2013;95(14):1297–304. https://doi.org/10.2106/JBJS.L.00820.

    Article  PubMed  Google Scholar 

  32. Nam D, Kepler CK, Neviaser AS, Jones KJ, Wright TM, Craig EV, et al. Reverse total shoulder arthroplasty: current concepts, results, and component wear analysis. J Bone Joint Surg Am. 2010;92(Suppl 2):23–35. https://doi.org/10.2106/JBJS.J.00769.

    Article  PubMed  Google Scholar 

  33. Regis M, Marin E, Fedrizzi L, Pressacco M. Additive manufacturing of Trabecular Titanium orthopedic implants. MRS Bull. 2015;40:137–44. https://doi.org/10.1557/mrs.2015.1.

    Article  CAS  Google Scholar 

  34. Roche CP, Stroud NJ, Martin BL, Steiler CA, Flurin PH, Wright TW, et al. Achieving fixation in glenoids with superior wear using reverse shoulder arthroplasty. J Shoulder Elb Surg. 2013;22:1695–701. https://doi.org/10.1016/j.jse.2013.03.008.

    Article  Google Scholar 

  35. Sagherian BH, Claridge RJ. Porous tantalum as a structural graft in foot and ankle surgery. Foot Ankle Int. 2012;33(3):179–89.

    Article  Google Scholar 

  36. Sandow M, Schutz C. Total shoulder arthroplasty using trabecular metal augments to address glenoid retroversion: the preliminary result of 10 patients with minimum 2-year follow-up. J Should Elbow Surg. 2016;25:598–607. https://doi.org/10.1016/j.jse.2016.01.001.

    Article  Google Scholar 

  37. Seidl AJ, Williams GR, Boileau P. Challenges in reverse shoulder arthroplasty: addressing glenoid bone loss. Orthopedics. 2016;39:14–23. https://doi.org/10.3928/01477447-20160111-01.

    Article  PubMed  Google Scholar 

  38. Walch G, Badet R, Boulahia A, Khoury A. Morphologic study of the glenoid in primary glenohumeral osteoarthritis. J Arthroplast. 1999;14:756–60.

    Article  CAS  Google Scholar 

  39. Walch G, Moraga C, Young A, Castellanos-Rosas J. Results of anatomic nonconstrained prosthesis in primary osteoarthritis with biconcave glenoid. J Shoulder Elb Surg. 2012;21:1526–33. https://doi.org/10.1016/j.jse.2011.11.030.

    Article  Google Scholar 

  40. Whitehouse MR, Masri BA, Duncan CP, Garbuz DS. Continued good results with modular trabecular metal augments for acetabular defects in hip arthroplasty at 7 to 11 years. Clin Orthop Relat Res. 2015;473:521–7. https://doi.org/10.1007/s11999-014-3861-x.

    Article  PubMed  Google Scholar 

  41. Wieser K, Borbas P, Ek ET, Meyer DC, Gerber C. Conversion of stemmed hemi- or total to reverse total shoulder arthroplasty: advantages of a modular stem design. Clin Orthop Relat Res. 2015;473:651–60. https://doi.org/10.1007/s11999-014-3985-z.

    Article  PubMed  Google Scholar 

  42. Williams GR Jr, Iannotti JP. Options for glenoid bone loss: composites of prosthetics and biologics. J Shoulder Elb Surg. 2007;16(Suppl 5):267–72.

    Article  Google Scholar 

  43. Yian EH, Werner CML, Nyffeler RW, Pfirrmann CW, Ramappa A, Sukthankar A, et al. Radiographic and computed tomography analysis of cemented pegged polyethylene glenoid components in total shoulder replacement. J Bone Joint Surg Am. 2005;87:1928–36.

    Article  Google Scholar 

  44. Zumstein MA, Pinedo M, Old J, Boileau P. Problems, complications, reoperations, and revisions in reverse total shoulder arthroplasty: a systematic review. J Shoulder Elb Surg. 2011;20:146–57. https://doi.org/10.1016/j.jse.2010.08.001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mayne, I.P., Poon, P.C. (2019). Metal Augments in Shoulder Arthroplasty. In: Trail, I., Funk, L., Rangan, A., Nixon, M. (eds) Textbook of Shoulder Surgery . Springer, Cham. https://doi.org/10.1007/978-3-319-70099-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70099-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70098-4

  • Online ISBN: 978-3-319-70099-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics