Advertisement

Design Principles of Reverse Arthroplasty

  • Anders EkelundEmail author
  • Didier Poncet
Chapter

Abstract

To restore function in cuff deficient shoulders reverse arthroplasty designs were developed. By reversing the articulation the center of rotation can be placed medially and inferiorly thereby restoring the length of the deltoid muscle. Furthermore, less muscle force is needed to elevate the arm since the lever arm for the deltoid muscle become longer. The first designs failed, but the concept introduced by Grammont, where a large hemisphere are placed on the glenoid side with the center of rotation at the bone-implant interface, has proven to be very successful. The original Grammont type reverse shoulder arthroplasty has a humeral non-anatomical inclination of 155 degrees and a large hemisphere on the glenoid side. This restores deltoid length, actually overtensions it, and improves the biomechanics of the deltoid muscle. Furthermore, more deltoid muscle can be used for abduction. However, impingement between the humeral component and scapula (notching) has been a concern. The original Grammont design has therefore been challenged and modified designs to reduce the risk for notching introduced. Compared to the original Grammont type design, lateralizing the center of rotation, lateralizing the humerus, and changing the inclination angle has been shown to decrease the risk of notching and improve rotation. When the center of rotation is lateralized the load on the glenoid component increases, resulting in a higher risk of glenoid component failure. A less medialized center of rotation decreases the lever arm for the Deltoid muscle compared to the original Grammont concept.

Keywords

Reverse arthroplasty design principles biomechanics medialized center of rotation inclination angle 

References

  1. 1.
    Neer CS. Shoulder reconstruction. Philadelphia: WB Saunders Company; 1990.Google Scholar
  2. 2.
    Flatow EL, Harrison AK. A history of reverse total shoulder arthroplasty. Clin Orthop Relat Res. 2011;469:2432–9.CrossRefGoogle Scholar
  3. 3.
    Baulot E, Sirveaux F, Boileau P. Grammont’s idea. The story of Paul Grammont’s functional surgery concept and development of the reverse principle. Clin Orthop Relat Res. 2011;469:2425–31.CrossRefGoogle Scholar
  4. 4.
    Grammont PM, Baulot E. Delta shoulder prosthesis for rotator cuff rupture. Orthopaedics. 1993;16:65–8.Google Scholar
  5. 5.
    Grammont PM, Bourgon J, Pelzer P. Study of a mechanical model for a shoulder total prosthesis: realization of a prototype. These de sciences de lÍngénieur. Dijon/Lyon: Université Dijon/ECAM de Lyon; 1981.Google Scholar
  6. 6.
    Grammont PM, Trouilloud P, Laffay JP, Deries X. Study and development of a new shoulder prosthesis (In French). Rhumatologie. 1987;39:407–18.Google Scholar
  7. 7.
    Boileau P, Watkinson DJ, Hatzidakis AM, Balg F. Grammont reverse prosthesis: design, rationale, and biomechanics. J Shoulder Elb Surg. 2005;14:147S–61S.CrossRefGoogle Scholar
  8. 8.
    Middernacht B, Van Tongel A, De Wilde L. A critical review of prosthetic features available for reversed total shoulder arthroplasty. Biomed Res Int. 2016.; Article ID 3256931.Google Scholar
  9. 9.
    Carpenter S, Pinkas D, Newton MD, Kurdziel MD, Baker KC, Wiater JM. Wear rates of retentive versus nonretentive reverse total shoulder arthroplasty liners in an in vitro wear simulation. J Shoulder Elb Surg. 2015;24:1372–9.CrossRefGoogle Scholar
  10. 10.
    Bacle G, Nové-Josserand L, Garaud P, Walch G. Long-term outcomes of reverse total shoulder arthroplasty. J Bone Joint Surg. 2017;99-A:454–61.CrossRefGoogle Scholar
  11. 11.
    Ek ETH, Neukom L, Catanzaro S, Gerber C. Reverse total shoulder arthroplasty for massive irreparable rotator cuff tears in patients younger than 65 years old: results after five to fifteen years. J Shoulder Elb Surg. 2013;22:1199–208.CrossRefGoogle Scholar
  12. 12.
    Favard L, Levigne C, Nerot C, Gerber C, De Wilde L, Mole D. Reverse prosthesis in arthropathies with cuff tear. Clin Orthop Relat Res. 2011;469:2469–75.CrossRefGoogle Scholar
  13. 13.
    Ackland DC, Patel M, Knox D. Prosthesis design and placement in reverse total shoulder arthroplasty. J Orthop Surg Res. 2015;10:101–9.CrossRefGoogle Scholar
  14. 14.
    Berliner JL, Regalado-Magdos A, Ma CB, Feeley BT. Biomechanics of reverse total shoulder arthroplasty. J Shoulder Elb Surg. 2015;24:150–60.CrossRefGoogle Scholar
  15. 15.
    Jazayeri R, Kwon YW. Evolution of the reverse total shoulder arthroplasty. Bull Hosp Joint Dis. 2011;69:50–5.Google Scholar
  16. 16.
    Lädermann A, Edwards TB, Walch G. Arm lengthening after reverse shoulder arthroplasty: a review. Int Orthop. 2014;38:991–1000.CrossRefGoogle Scholar
  17. 17.
    Jobin CM, Brown GD, Bahu MJ, Gardner TR, Bigliani LU, Levine WN, Ahmad CS. Reverse total shoulder arthroplasty for cuff tear arthropathy: the clinical effect of deltoid lengthening and center of rotation medialization. J Shoulder Elb Surg. 2012;21:1269–77.CrossRefGoogle Scholar
  18. 18.
    Ackland DC, Roshan-Zamir S, Richardson M, Pandy MG. Moment arms of the shoulder musculature after reverse total shoulder arthroplasty. J Bone Joint Surg. 2010;92:1221–30.CrossRefGoogle Scholar
  19. 19.
    Walker DR, Struk AM, Matsuki K, Wright TW, Banks SA. How do deltoid muscle moment arms change after reverse total shoulder arthroplasty? J Shoulder Elb Surg. 2016;25:581–8.CrossRefGoogle Scholar
  20. 20.
    Greiner SH, Back DA, Herrmann S, Perka C, Asbach P. Degenerative changes of the deltoid muscle have impact on clinical outcome after reversed total shoulder arthroplasty. Arch Orthop Trauma Surg. 2010;130:177–83.CrossRefGoogle Scholar
  21. 21.
    Berhouet J, Garaud P, Favard L. Evaluation of the role of glenosphere design and humeral component retroversion in avoiding scapular notching during reverse shoulder arthroplasty. J Shoulder Elb Surg. 2014;23:151–8.CrossRefGoogle Scholar
  22. 22.
    De Wilde LF, Poncet D, Middernacht B, Ekelund A. Prosthetic overhang is the most effective way to prevent scapular conflict in reverse total shoulder arthroplasty. Acta Orthop Scand. 2010;81:719–26.CrossRefGoogle Scholar
  23. 23.
    Huri G, Familiari F, Salari N, Petersen SA, Doral MN, McFarland EG. Prosthetic design of reverse shoulder arthroplasty contributes to scapular notching and instability. World J Orthop. 2016;7:738–45.CrossRefGoogle Scholar
  24. 24.
    Krämer M, Bäunker A, Wellmann M, Hurschler C, Smoth T. Implant impingement during internal rotation after reverse shoulder arthroplasty. The effect of implant configuration and scapula anatomy: a biomechanical study. Clin Biomech. 2016;3:111–6.CrossRefGoogle Scholar
  25. 25.
    Mollon B, Mahure SA, Roche CP, Zuckerman JD. Impact of scapular notching on clinical outcomes after reverse total shoulder arthroplasty: an analysis of 476 shoulders. J Shoulder Elb Surg. 2017;26:1253–61.CrossRefGoogle Scholar
  26. 26.
    Nyffler RW, Werner CM, Gerber C. Biomechanical relevance of glenoid component positioning in reverse delta III total shoulder prosthesis. J Shoulder Elb Surg. 2005;14:524–8.CrossRefGoogle Scholar
  27. 27.
    Ackland DC, Richardson M, Pandy MG. Axial rotation moment arms of the shoulder musculature after reverse total shoulder arthroplasty. J Bone Joint Surg. 2012;94:1886–95.CrossRefGoogle Scholar
  28. 28.
    Roche CP, Marczuk Y, Wright TW, Flurin P-H, Grey SG, Jones RB, Routman HD, Gilot GJ, Zuckerman JD. Scapular notching in reverse arthroplasty. Bull Hosp Jt Dis. 2013;71(4):278–83.Google Scholar
  29. 29.
    Poon PC, Chou J, Young SW, Astley T. A comparison of concentric and eccentric glenospheres in reverse shoulder arthroplasty. J Bone Joint Surg. 2014;96:e138 (1–7).CrossRefGoogle Scholar
  30. 30.
    Di Biase CF, Ziveri G, Delcogliani M, de Caro F, Gumina S, Borroni M, Castagna A, Postacchini R. The use of an eccentric glenosphere compared with a concentric glenosphere in reverse total shoulder arthroplasty: two-year minimum follow-up results. Int Orthop. 2013;37:1949–55.CrossRefGoogle Scholar
  31. 31.
    Elwell J, Choi J, Willing R. Quantifying the competing relationship between adduction range of motion and baseplate micromotion with lateralization of reverse total shoulder arthroplasty. J Biomech. 2017;52:24–30.CrossRefGoogle Scholar
  32. 32.
    Yang C-C, Lu C-L, Wu CH, Wu J-J, Huang T-L, Chen R, Yeh M-K. Stress analysis of glenoid component in design of reverse shoulder prosthesis using finite element method. J Shoulder Elb Surg. 2013;22:932–9.CrossRefGoogle Scholar
  33. 33.
    Erickson BJ, Frank RM, Harris JD, Mall N, Romeo AA. The influence of humeral head inclination in reverse total shoulder arthroplasty: a systematic review. J Shoulder Elb Surg. 2015;24:988–93.CrossRefGoogle Scholar
  34. 34.
    Erickson BJ, Harris JD, Romeo AA. The effect of humeral inclination on range of motion in reverse total shoulder arthroplasty: a systematic review. Am J Orthop. 2016;45(4):E174–9.PubMedGoogle Scholar
  35. 35.
    Giles JW, Langohr DG, Johnson JA, Athwal GS. Implant design variations in reverse total shoulder arthroplasty influence the required deltoid force and resultant joint load. Clin Orthop Relat Res. 2015;473:3615–26.CrossRefGoogle Scholar
  36. 36.
    Hoenecke HR, Flores-Hernandez C, D’Lima DD. Reverse total shoulder arthroplasty component center of rotation affects muscle function. J Shoulder Elb Surg. 2014;233:1128–35.CrossRefGoogle Scholar
  37. 37.
    Jeon B-K, Panchal KA, Ji J-H, Xin Y-Z, Park S-R, Kim J-H, Yang S-J. Combined effect of change in humeral neck-shaft angle and retroversion on shoulder range of motion in reverse total shoulder arthroplasty- A simulation study. Clin Biomech. 2016;31:12–9.CrossRefGoogle Scholar
  38. 38.
    Routman HD, Fluron P-H, Wright TW, Zuckerman JD, Hamilton MA, Roche CP. Reverse shoulder arthroplasty prosthesis design classification system. Bull Hosp Jt Dis. 2015;73(Suppl 1):S5–S14.Google Scholar
  39. 39.
    Sachinis NP, Athanasiadou P. Current designs and trends in reverse shoulder arthroplasty. OA Orthop. 2013;1(3):24.CrossRefGoogle Scholar
  40. 40.
    Streit JJ, Shishani Y, Gobezie R. Medialized versus lateralized center of rotation in reverse shoulder arthroplasty. Orthopaedics. 2015;38:e1098–103.CrossRefGoogle Scholar
  41. 41.
    Valenti P, Sauzieres P, Katz D, Kalouche I, Kilinc AS. Do less medialized reverse shoulder prosthesis increase motion and reduce notching? Clin Orthop Relat Res. 2011;469:2550–7.CrossRefGoogle Scholar
  42. 42.
    Werner BS, Chaoui J, Walch G. The influence of humeral neck shaft angle and glenoid lateralization on range of motion in reverse shoulder arthroplasty. J Shoulder Elb Surg.  https://doi.org/10.1016/j.jse.2017.03.032. [Epub ahead of print].CrossRefGoogle Scholar
  43. 43.
    Levy O, Narvani A, Hous N, Abraham R, Relwani J, Pradhan R, Bruguera J, Sforza G, Atoun E. Reverse shoulder arthroplasty with cementless short metaphyseal humeral implant without a stem: clinical and radiological outcomes in prospective 2- to 7 years follow-up study. J Shoulder Elb Surg. 2016;25:1362–70.CrossRefGoogle Scholar
  44. 44.
    Moroder P, Ernstbrunner L, Zweiger C, Schatz M, Seitlinger G, Skursky R, Becker J, Resch H, Krifter RM. Short to mid-term results of stemless reverse shoulder arthroplasty in a selected patient population compared to a matched control group with stem. Int Orthop. 2016;40:2115–20.CrossRefGoogle Scholar
  45. 45.
    Teissier P, Teissier J, Kouyoumdjian P, Asencio G. The TESS reverse shoulder arthroplasty without a stem in the treatment of cuff-deficient shoulder conditions: clinical and radiological results. J Shoulder Elb Surg. 2015;24:45–51.CrossRefGoogle Scholar
  46. 46.
    Chae SW, Kim SY, Lee H, Yon JR, Lee J, Han SH. Effect of baseplate size on primary glenoid stability and impingementfree range of motion in reverse shoulder arthroplasty. BMC Musculoskelet Disord. 2014;15:417–22.  https://doi.org/10.1186/1471-2474-15-417.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Roche CP, Stroud NJ, Flurin PH, Wright TW, Zuckderman JD, DiPaola MJ. Reverse shoulder glenoid base plate fixation: a comparison of flat-back versus curved-back designs and oval versus circular designs with 2 different offset glenospheres. J Shoulder Elb Surg. 2014;23:1388–94.CrossRefGoogle Scholar
  48. 48.
    Königshausen M, Jettkant B, Sverdlova N, Ehlert C, Gessman J, Schildhauer TA, Seybold D. Influence of different peg length in glenoid bone loss: a biomechanical analysis regarding primary stability of the glenoid baseplater in reverse shoulder arthroplasty. Technol Health Care. 2015;23:855–69.CrossRefGoogle Scholar
  49. 49.
    Stephens BF, Hebert CT, Azar FM, Mihalko WM, Throckmorton TW. Optimal baseplate rotational alignment for locking-screw fixation in reverse total shoulder arthroplasty: a three-dimensional computer-aided design study. J Shoulder Elb Surg. 2015;24:1367–71.CrossRefGoogle Scholar
  50. 50.
    Walker M, Brooks J, Willis M, Frankle M. How reverse shoulder arthroplasty works. Clin Orthop Relat Res. 2011;469:2440–51.CrossRefGoogle Scholar
  51. 51.
    Formaini NT, Everding NG, Levy JC, Santoni BG, Nayak AN, Wilson C. Glenoid baseplate fixation using hybrid configurations of locked and unlocked peripheral screws. J Orthop Traumatol. 2017;  https://doi.org/10.1007/s10195-016-0438-3. [Epub ahead of print].CrossRefGoogle Scholar
  52. 52.
    James J, Allison MA, Werner FW, McBride DE, Basu NN, Sutton LG, Nanavati VN. Reverse shoulder arthroplasty glenoid fixation: is there a benefit in using four instead of two screws? J Shoulder Elb Surg. 2013;22:1030–6.CrossRefGoogle Scholar
  53. 53.
    Cusick MC, Husey MM, Steen BM, Hartzler RU, Clark RE, Cuff DJ, Cabezas AF, Santoni BG, Frankle MA. Glenosphere dissociation after reverse shoulder arthroplasty. J Shoulder Elb Surg. 2015;24:1061–8.CrossRefGoogle Scholar
  54. 54.
    Vaupel ZM, Baker KC, Kurdziel MD, Wiater JM. Wear simulation of reverse total shoulder arthroplasty system: effect of glenosphere design. J Shoulder Elb Surg. 2012;21:1422–9.CrossRefGoogle Scholar
  55. 55.
    Torrens C, Guirro P, Miquel J, Santana F. Influence of glenosphere size on the development of scapular notching: a prospective randomized study. J Shoulder Elb Surg. 2016;25:1735–41.CrossRefGoogle Scholar
  56. 56.
    Gutiérrez S, Levy JC, Frankle MA, Cuff D, Keller TS, Pupello DR, Lee WE. Evaluation of abduction range of motion and avoidance of inferior scapular impingement in a reverse shoulder model. J Shoulder Elb Surg. 2008;17:608–15.CrossRefGoogle Scholar
  57. 57.
    Henninger HB, King FK, Tashjian RZ, Burks RT. Biomechanical comparison of reverse total shoulder arthroplasty systems in soft tissue-constrained shoulders. J Shoulder Elb Surg. 2014;23:e108–17.CrossRefGoogle Scholar
  58. 58.
    Lawrence C, Wiliams GR, Namdari S. Influence of glenosphere design on outcomes and complications of reverse arthroplasty: a systematic review. Clin Orthop Surg. 2016;8:288–97.CrossRefGoogle Scholar
  59. 59.
    Constantini O, Choi DS, Kontaxis A, Gulotta LV. The effects of progressive lateralization of the joint center of rotation of reverse total shoulder implants. J Shoulder Elb Surg. 2015;24:1120–8.CrossRefGoogle Scholar
  60. 60.
    Liou W, Yang Y, Petersen-Fitts GR, Lombardo DJ, Stine S, Sabesan VJ. Effect of lateralized design on muscle and joint reaction forces for reverse shoulder arthroplasty. J Shoulder Elb Surg. 2017;26:564–72.CrossRefGoogle Scholar
  61. 61.
    Boileau P, Moineau G, Roussanne Y, O’Shea K. Bony increased-offset reversed shoulder arthroplasty: minimizing scapular impingement while maximizing glenoid fixation. Clin Orthop Relat Res. 2011;469:2558–67.CrossRefGoogle Scholar
  62. 62.
    Athwal GS, MacDermid JC, Redy KM, Marsh JP, Faber KJ, Drosdowech D. Does bony increased-offset reverse shoulder arthroplasty decrease scapular notching? J Shoulder Elb Surg. 2015;24:468–73.CrossRefGoogle Scholar
  63. 63.
    Wong MT, Langohr DG, Athwal GS, Johnson JA. Implant positioning in reverse shoulder arthroplasty has an impact on acromial stresses. J Shoulder Elb Surg. 2016;25:1889–95.CrossRefGoogle Scholar
  64. 64.
    Kohut G, Dallmann F, Irlenbusch U. Wear induced loss of mass in reversed total shoulder arhroplasty with conventional and inverted bearing materials. J Biomech. 2012;45:469–73.CrossRefGoogle Scholar
  65. 65.
    Lädermann A, Denard PJ, Boileau P, Farron A, Deransart P, Terrier A, Ston J, Walch G. Effect of humeral stem design on humeral position and range of motion in reverse arthroplasty. Int Orthop. 2015;39:2205–13.CrossRefGoogle Scholar
  66. 66.
    Oh JH, Shin S-J, McGarry MH, Scott JH, Heckmann N, Lee TQ. Biomechanical effects of humeral neck-shaft angle and subscapularis integrity in reverse total shoulder arthroplasty. J Shoulder Elb Surg. 2014;23:1091–8.CrossRefGoogle Scholar
  67. 67.
    Langohr GDG, Willing R, Medley JB, Athwal GS, Johnson JA. Contact mechanics of reverse total shoulder arthroplasty during abduction: the effect of neck-shaft angle, humeral cup depth, and glenosphere diameter. J Shoulder Elb Surg. 2016;25:589–97.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of OrthopaedicsCapio St Görans HospitalStockholmSweden
  2. 2.LyonFrance

Personalised recommendations