CNN-LSTM Neural Network Model for Quantitative Strategy Analysis in Stock Markets

  • Shuanglong Liu
  • Chao Zhang
  • Jinwen MaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10635)


In this paper, the convolutional neural network and long short-term memory (CNN-LSTM) neural network model is proposed to analyse the quantitative strategy in stock markets. Methodically, the CNN-LSTM neural network is used to make the quantitative stock selection strategy for judging stock trends by using the CNN, and then make the quantitative timing strategy for improving the profits by using the LSTM. It is demonstrated by the experiments that the CNN-LSTM neural network model can be successfully applied to making quantitative strategy, and achieving better returns than the basic Momentum strategy and the Benchmark index.


Neural network CNN LSTM Quantitative strategy Stock markets 



This work was supported by the Natural Science Foundation of China for Grant 61171138.


  1. 1.
    Fu, C., Fu, M., Que, J.: Prediction of stock price base on radial basic function neural networks. Technol. Dev. Enterp. 4, 005 (2004)Google Scholar
  2. 2.
    Sun, W., Guo, J., Xia, B.: Discussion about stock prediction theory based on RBF neural network. Heilongjiang Sci. Technol. Inf. 22, 130 (2010)Google Scholar
  3. 3.
    Liu, S., Ma, J.: Stock price prediction through the mixture of gaussian processes via the precise Hard-cut EM algorithm. In: Huang, D.-S., Han, K., Hussain, A. (eds.) ICIC 2016. LNCS, vol. 9773, pp. 282–293. Springer, Cham (2016). doi: 10.1007/978-3-319-42297-8_27 CrossRefGoogle Scholar
  4. 4.
    Chavarnakul, T., Enke, D.: Intelligent technical analysis based equivolume charting for stock trading using neural networks. Expert Syst. Appl. 34(2), 1004–1017 (2008)CrossRefGoogle Scholar
  5. 5.
    Ding, X., Zhang, Y., Liu, T., Duan, J.: Deep learning for event-driven stock prediction. In: International Conference on Artificial Intelligence, pp. 2327–2333. AAAI Press (2015)Google Scholar
  6. 6.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  7. 7.
    Murtaza, R., Harshal, P., Shraddha, V.: Predicting stock prices using LSTM. Int. J. Sci. Res. (IJSR) 6(4), 1754–1756 (2017)Google Scholar
  8. 8.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  9. 9.
    Bouvrie, J.: Notes on Convolutional Neural Networks. Neural Nets (2006)Google Scholar
  10. 10.
    Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195(1), 215–243 (1968)CrossRefGoogle Scholar
  11. 11.
    Murtagh, F., Starck, J., Renaud, O.: On neuro-wavelet modeling. Decis. Support Syst. 37(4), 475–484 (2004)CrossRefGoogle Scholar
  12. 12.
    Terzija, N.: Robust digital image watermarking algorithms for copyright protection (2006)Google Scholar
  13. 13.
    Sak, H., Senior, A., Beaufays, F.: Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In: Fifteenth Annual Conference of the International Speech Communication Association (2014)Google Scholar
  14. 14.
    Fryzlewicz, P., Bellegem, S., Sachs, R.: Forecasting non-stationary time series by wavelet process modelling. Ann. Inst. Stat. Math. 55(4), 737–764 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Greff, K., Srivastava, R.K., Koutnik, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. pp(99), 1–11 (2016)Google Scholar
  16. 16.
    Takeuchi, L., Lee, Y.: Applying deep learning to enhance momentum trading strategies in stocks. Working paper, Stanford University (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Information Science, School of Mathematical Sciences and LMAMPeking UniversityBeijingChina
  2. 2.Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina

Personalised recommendations