Abstract
A comprehensive search of various candidate materials is an important step in discovering novel materials with desirable physical properties. However, the search space is quite vast, so that it is not practical to perform exhaustive experiments to check all the candidates. Even if the chemical composition is the same, the properties of materials may differ significantly depending on the crystal structure, and therefore, the number of possible combinations increases considerably. Recently, machine learning methods have been successfully applied to material search to estimate prediction models using existing databases and predict the physical properties of unknown substances. In this research, we propose a novel kernel function between compounds, which directly uses crystal structure information for the prediction of physical properties of inorganic crystalline compounds based on the crystal structures. We conduct evaluation experiments and show that the structure information improves the prediction accuracy.
Keywords
- Machine learning
- Kernel
- Material informatics
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Hansen, K., Montavon, G., Biegler, F., Fazli, S., Rupp, M., Scheffler, M., Von Lilienfeld, O.A., Tkatchenko, A., Müller, K.R.: Assessment and validation of machine learning methods for predicting molecular atomization energies. J. Chem. Theor. Comput. 9(8), 3404–3419 (2013)
Montavon, G., Rupp, M., Gobre, V., Vazquez-Mayagoitia, A., Hansen, K., Tkatchenko, A., Müller, K.R., Von Lilienfeld, O.A.: Machine learning of molecular electronic properties in chemical compound space. New J. Phys. 15, 095003 (2013)
Nakayama, K.: Compound descriptors for machine learning based material design. Master’s thesis, Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University (2015)
Rupp, M., Tkatchenko, A., Müller, K.R., Lilienfeld, V., Von Lilienfeld, O.A.: Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108(5), 58301 (2012). http://eprints.pascal-network.org/archive/00009418/
Schütt, K.T., Glawe, H., Brockherde, F., Sanna, A., Müller, K.R., Gross, E.K.U.: How to represent crystal structures for machine learning: towards fast prediction of electronic properties. Phys. Rev. B Condens. Matter Mater. Phys. 89(20), 1–5 (2014)
Seko, A., Togo, A., Hayashi, H., Tsuda, K., Chaput, L., Tanaka, I.: Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and Bayesian Optimization. Phys. Rev. Lett. 115(20), 1–5 (2015)
Acknowledgments
This work was supported by MEXT Grant-in-Aid for Scientific Research on Innovative Areas, Exploration of Nanostructure-property Relationships for Materials Innovation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Akita, H., Baba, Y., Kashima, H., Seko, A. (2017). Atomic Distance Kernel for Material Property Prediction. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10634. Springer, Cham. https://doi.org/10.1007/978-3-319-70087-8_55
Download citation
DOI: https://doi.org/10.1007/978-3-319-70087-8_55
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70086-1
Online ISBN: 978-3-319-70087-8
eBook Packages: Computer ScienceComputer Science (R0)