Skip to main content

Solving the Local-Minimum Problem in Training Deep Learning Machines

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10634))

Included in the following conference series:

Abstract

The local-minimum problem in training deep learning machines (DLMs) has plagued their development. This paper proposes a method to directly solve the problem. Our method is based on convexification of the sum squared error (SSE) criterion through transforming the SSE into a risk averting error (RAE) criterion. To alleviate numerical difficulties, a normalized RAE (NRAE) is employed. The convexity region of the SSE expands as its risk sensitivity index (RSI) increases. Making the best use of the convexity region, our method starts training with a very large RSI, gradually reduces it, and switches to the RAE as soon as the RAE is numerically feasible. After training converges, the resultant DLM is expected to be inside the attraction basin of a global minimum of the SSE. Numerical results are provided to show the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layerwise training of deep networks. In: Bernhard, S., Platt, J., Hofmann, T. (eds.) Advances in Neural Information Processing Systems, vol. 19, pp. 153–160. MIT Press, Cambridge (2007)

    Google Scholar 

  2. Choromanska, A., Henaff, M., Mathieu, M., Arous, G., LeCun, Y.: The loss surfaces of multilayer networks. In: arXiv:1412.0233 [cs.LG] (2015)

  3. Dauphin, Y.N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., Bengio, Y.: Identifying and attacking the saddle point problem in high dimensional nonconvex optimization. In: arXiv:1406.2572 [cs.LG] (2014)

  4. Hinton, G.E.: A practical guide to training restricted boltzmann machines. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 599–619. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35289-8_32

    Chapter  Google Scholar 

  5. Hinton, G., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006). MIT Press, Cambridge, Massachusetts

    Article  MATH  MathSciNet  Google Scholar 

  6. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: arXiv:1502.03167 [cs.LG] (2015)

  7. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. MIT Press, Cambridge (2012)

    Google Scholar 

  8. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). Wiley-IEEE Press, Indianapolis, Indiana

    Article  Google Scholar 

  9. Lo, J.: Convexification for data fitting. J. Global Optim. 46(2), 307–315 (2010). Springer, New York

    Article  MATH  MathSciNet  Google Scholar 

  10. Lo, J., Gui, Y., Peng, Y.: The normalized risk-averting error criterion for avoiding nonglobal local minima in training neural networks. Neurocomputing 149(1), 3–12 (2015). Elsevier, Oxford, UK

    Article  Google Scholar 

  11. Lo, J.: Statistical method of pruning neural networks, In: Proceedings of the 1999 International Joint Conference on Neural Networks, vol. 3, pp. 1678–1680. Wiley-IEEE Press, Indianapolis, Indiana (1999)

    Google Scholar 

  12. Pascanu, R., Dauphin, Y., Ganguli, S., Bengio, Y.: On the saddle point problem for non-convex optimization. In: arXiv:1405.4604v2 [cs.LG] (2014)

  13. Salakhutdinov, R., Hinton, G.: Deep Boltzmann machines. J. Mach. Learn. Res. 5(2), 448–455 (2009). Microtome Publishing, Brookline, Massachusetts

    MATH  Google Scholar 

Download references

Acknowledgements

The work was supported in part by the U.S.A. National Science Foundation under Grant ECCS1028048 and Grant ECCS1508880, but does not necessarily reflect the position or policy of the U.S.A. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Ting-Ho Lo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lo, J.TH., Gui, Y., Peng, Y. (2017). Solving the Local-Minimum Problem in Training Deep Learning Machines. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10634. Springer, Cham. https://doi.org/10.1007/978-3-319-70087-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70087-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70086-1

  • Online ISBN: 978-3-319-70087-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics