Nutrients and Harmful Algal Blooms: Dynamic Kinetics and Flexible Nutrition

  • Patricia M. GlibertEmail author
  • Cynthia A. Heil
  • Frances P. Wilkerson
  • Richard C. Dugdale
Part of the Ecological Studies book series (ECOLSTUD, volume 232)


Nutrient pollution is altering the availability of nutrients for phytoplankton in waters throughout the world. The consequence is that many receiving waters are now not only enriched with nutrients, but these nutrients are in proportions that differ from those of decades past—and also diverge considerably from those that have long been associated with phytoplankton growth, namely, Redfield proportions. The classic focus on nutrient limitation and application of fixed kinetic models has created considerable confusion in the literature with respect to nutrient regulation of harmful algal blooms (HABs). Here, we underscore the dynamic nature of nutrient responses and the fact that nutrient ratios do, indeed, matter, whether nutrients are limiting or not. Understanding nutrient limitation of growth does not inform changes in biodiversity, including changes leading to HABs. Our concepts of nutrient regulation must be expanded to include an understanding of how nutrients can be regulating even in a nutrient-saturated, eutrophic environment. The complexity of management of anthropogenic nutrient loads is well recognized, but our practice of viewing responses through a single, limiting nutrient viewpoint has hampered progress of nutrient management in relation to HABs. Controlling one nutrient may control overall biomass, but it may have unintended consequences for community structure. The synergism complicating our understanding of the relationship between nutrients and HABs, and further negating the simple construct of nutrient-dose relationships, is the fact that for many HABs, acquisition of nutrients occurs not only in dissolved but also in particulate form. The balance between autotrophy and mixotrophy thus becomes another factor that can drive biodiversity changes. The synergism of phototrophy and heterotrophy in mixotrophs has important consequences for cell metabolism, especially the maintenance of cell stoichiometry. Mixotrophy not only is an important nutritional strategy in plankton that form toxic blooms, but it is this process that may allow blooms to be sustained in nutrient-enriched environments where both dissolved nutrients and prey are ample and may allow blooms to be sustained for longer periods than autotrophy alone would allow.



This is a contribution of the GEOHAB Core Research Project on HABs and Eutrophication. The authors wish to thank T. Kana, K. Flynn, and A. Mitra for many fruitful collaborations that contributed to the ideas presented herein. This is contribution number 5405 from the University of Maryland Center for Environmental Science.


  1. Acquisti C, Elser JJ, Kumar S (2009) Ecological nitrogen limitation shapes the DNA composition of plant genomes. Mol Biol Evol 26:953–956CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adolf JE, Bachvaroff T, Place AR (2008) Cryptophyte abundance drives blooms of mixotrophic harmful algae: a hypothesis based on Karlodinium veneficum as a model system. Harmful Algae 8:119–128CrossRefGoogle Scholar
  3. Adolf JE, Krupatkina D, Bachvaroff T et al (2007) Karlotoxin mediates grazing by Oxyrrhis marina on strains of Karlodinium veneficum. Harmful Algae 6:400–412CrossRefGoogle Scholar
  4. Aksnes DL, Egge JK (1991) A theoretical model for nutrient uptake in phytoplankton. Mar Ecol Prog Ser 70:65–72CrossRefGoogle Scholar
  5. Allen AE, Dupont CL, Obornik M et al (2011) Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 473:203–207CrossRefGoogle Scholar
  6. Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25(4):704–726CrossRefGoogle Scholar
  7. Berge T, Poulsen LK, Moldrup M et al (2012) Marine microalgae attack and feed on metazoans. ISME J 6:1926–1936CrossRefPubMedPubMedCentralGoogle Scholar
  8. Beusen AHW, Bouwman AF, Van Beek LPH et al (2016) Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences 13:2441–2451. Scholar
  9. Bonachela J, Allison SD, Martiny AC et al (2013) A model for variable phytoplankton stoichiometry based on cell protein regulation. Biogeosciences 10:4341–4356. Scholar
  10. Bouwman AF, Beusen AHW, Lassaletta L et al (2017) Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Sci Rep.
  11. Boyd PW, Doney SC (2003) The impact of climate change and feedback processes on the ocean carbon cycle. In: Fasham MJR (ed) Ocean biogeochemistry – the role of the ocean carbon cycle in global change. Springer, Berlin, pp 157–193Google Scholar
  12. Britto DT, Kronzucker HJ (2002) NH4+ toxicity in higher plants: a critical review. J Plant Physiol 159:567–584CrossRefGoogle Scholar
  13. Britto DT, Kronzucker HJ (2013) Ecological significance and complexity of N-source preference in plants. Ann Bot 112:957–963CrossRefPubMedPubMedCentralGoogle Scholar
  14. Burkholder JM, Glibert PM, Skelton HM (2008) Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8:77–93. Scholar
  15. Button DK, Robertson B, Gustafson E et al (2004) The experimental and mathematical foundation of specific affinity, a cytoarchitecture-based theory for replacing the Michaelis Menten paradigm. Appl Environ Microbiol 70:5511–5521CrossRefPubMedPubMedCentralGoogle Scholar
  16. Clarkson NM, Luttge U (1991) Mineral nutrition: inducible and repressible nutrient transport systems. Program Bot 52:61–83CrossRefGoogle Scholar
  17. Cleland EE, Harpole WS (2010) Nitrogen enrichment and plant communities. Ann N Y Acad Sci 1195:46–61. Scholar
  18. Cloern JE (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210:223–253CrossRefGoogle Scholar
  19. Collos Y, Bec B, Jauzein C et al (2009) Oligotrophication and emergence of picocyanobacteria and a toxic dinoflagellate in Thau Lagoon, southern France. J Sea Res 61:68–75CrossRefGoogle Scholar
  20. Coruzzi G, Bush GR (2001) Nitrogen and carbon nutrient and metabolite signaling in plants. Plant Physiol 125:61–64CrossRefPubMedPubMedCentralGoogle Scholar
  21. Crawford NN, Glass AND (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3:389–395CrossRefGoogle Scholar
  22. Cullen JT, Sherrell RM (2005) Effects of dissolved carbon dioxide, zinc, and manganese on the cadmium to phosphorus ratio in natural phytoplankton assemblages. Limnol Oceanogr 50:1193–1204CrossRefGoogle Scholar
  23. Dagenais-Bellefeuille S, Morse D (2013) Putting the N in dinoflagellates. Front Microbiol 4:article 369 (14 p).
  24. Daniel-Vedele F, Filleur S, Caboche M (1998) Nitrate transport: a key step in nitrate assimilation. Curr Opin Plant Biol 1:235–239CrossRefPubMedGoogle Scholar
  25. DeBaar HJW (1994) VonLiebig’s law of the minimum and plankton ecology (1899-1991). Prog Oceanogr 33:347–386CrossRefGoogle Scholar
  26. Dugdale RC (1967) Nutrient limitation in the sea: dynamics, identification and significance. Limnol Oceanogr 12:685–695CrossRefGoogle Scholar
  27. Dugdale RC, Jones BH, MacIsaac JJ et al (1981) Adaptation of nutrient assimilation. Can Bull Fish Aquat Sci 210:234–250Google Scholar
  28. Dugdale RC, Wilkerson FP, Hogue VE et al (2007) The role of ammonium and nitrate in spring bloom development in San Francisco Bay. Estuar Coast Shelf Sci 73:17–29CrossRefGoogle Scholar
  29. Dugdale RC, Wilkerson FP, Morel A (1990) Realization of new production in coastal upwelling areas: a means to compare relative performance. Limnol Oceanogr 35:822–829CrossRefGoogle Scholar
  30. Elser JJ, Bracken MES, Cleland EE et al (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142CrossRefGoogle Scholar
  31. Escobar MA, Geisler DA, Rasmusser AG (2006) Reorganization of the alternative pathways of the Arabidopsis respiratory chain by nitrogen supply: opposing effects of ammonium and nitrate. Plant J 45:775–788CrossRefPubMedGoogle Scholar
  32. Falkowski PG (1975) Nitrate uptake in marine phytoplankton: comparison of half-saturation constants from seven species. Limnol Oceanogr 20:412–417CrossRefGoogle Scholar
  33. Finkel ZV, Beardall J, Flynn KJ et al (2010) Phytoplankton in a changing world: cell size and elemental stoichiometry. J Plankton Res 32:119–137CrossRefGoogle Scholar
  34. Finkel ZV, Follows MJ, Liefer JD et al (2016) Phylogenetic diversity in the macromolecular composition of microalgae. PLoS One 11(5):e0155977. Scholar
  35. Flynn KJ (2005a) Modeling marine phytoplankton growth under eutrophic conditions. J Sea Res 54:92–103CrossRefGoogle Scholar
  36. Flynn KJ (2005b) Castles built on sand: dysfunctional plankton models and the failure of the biology-modeling interface. J Plankton Res 27:1205–1210CrossRefGoogle Scholar
  37. Flynn KJ (2009) Ecological modelling in a sea of variable stoichiometry: dysfunctionality and the legacy of Redfield and Monod. Prog Oceanogr.
  38. Flynn KJ, Mitra A (2009) Building the “perfect beast”: modelling mixotrophic plankton. J Plankton Res 31:965–992CrossRefGoogle Scholar
  39. Flynn KJ, Mitra A, Glibert PM et al (2018) Mixotrophy in HABs: by whom, on whom, when, why, and what next. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 113–132CrossRefGoogle Scholar
  40. Flynn KJ, Page S, Wood G et al (1999) Variations in the maximum transport rates for ammonium and nitrate in the prymnesiophyte Emiliania huxleyi and the raphidophyte Heterosigma carterae. J Plankton Res 21:355–371CrossRefGoogle Scholar
  41. Flynn KJ, Stoecker DK, Mitra A et al (2013) Misuse of the phytoplankton-zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. J Plankton Res 35:3–11CrossRefGoogle Scholar
  42. Fu M, Wang Z, Pu X et al (2012) Changes in nutrient concentrations and N:P:Si ratios and their possible impacts on the Huanghai Sea ecosystem. Acta Oceanol Sinica 31:101–112CrossRefGoogle Scholar
  43. Galloway JN, Cowling EB, Seitzinger SP et al (2002) Reactive nitrogen: too much of a good thing? Ambio 31:60–63CrossRefPubMedGoogle Scholar
  44. GEOHAB (2001) Global ecology and oceanography of harmful algal blooms, science plan. Glibert P, Pitcher G (eds) SCOR and IOC, Baltimore and Paris, 86 ppGoogle Scholar
  45. GEOHAB (2006) Global ecology and oceanography of harmful algal blooms: HABs in Eutrophic Systems. Glibert PM (ed) SCOR and IOC, Paris and Baltimore, 74 ppGoogle Scholar
  46. Gerendás J, Zhu Z, Bendixon R et al (1997) Physiological and biochemical processes related to ammonium toxicity in higher plants. Z Pflanzenernaehr Bodenkd 160:239–251CrossRefGoogle Scholar
  47. Glibert PM (2017) Eutrophication, harmful algae and biodiversity – challenging paradigms in a world of complex nutrient changes. Mar Pollut Bull 124:591–606. Scholar
  48. Glibert PM, Al-Azri A, Allen JI et al (2018a) Key questions and recent research advances on harmful algal blooms in relation to nutrients and eutrophication. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 229–259CrossRefGoogle Scholar
  49. Glibert PM, Beusen AHW, Harrison JA et al (2018b) Changing land-, sea- and airscapes: sources of nutrient pollution affecting habitat suitability for harmful algae. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 53–76CrossRefGoogle Scholar
  50. Glibert PM, Burford MA (2017) Globally changing nutrient loads and harmful algal blooms: recent advances, new paradigms, and continuing challenges. Oceanography 30(1):58–69. Scholar
  51. Glibert PM, Burkholder JM (2011) Eutrophication and HABs: strategies for nutrient uptake and growth outside the Redfield comfort zone. Chin J Oceanol Limnol 29:724–738CrossRefGoogle Scholar
  52. Glibert PM, Burkholder JM, Kana TM et al (2009) Grazing by Karenia brevis on Synechococcus enhances their growth rate and may help to sustain blooms. Aquat Microb Ecol 55:17–30CrossRefGoogle Scholar
  53. Glibert PM, Kana TM, Brown K (2013) From limitation to excess: consequences of substrate excess and stoichiometry for phytoplankton physiology, trophodynamics and biogeochemistry, and implications for modeling. J Mar Syst 125:14–28CrossRefGoogle Scholar
  54. Glibert PM, Manager R, Sobota et al (2014a) The Haber-Bosch–harmful algal bloom (HB-HAB) link. Environ Res Lett 9:105001 (13 p). Scholar
  55. Glibert PM, Seitzinger S, Heil C et al (2005) The role of eutrophication in the global proliferation of harmful algal blooms: new perspectives and new approaches. Oceanography 18(2):198–209CrossRefGoogle Scholar
  56. Glibert PM, Wilkerson F, Dugdale RC et al (2014b) Microbial communities from San Francisco Bay Delta respond differently to oxidized and reduced nitrogen substrates – even under conditions that would otherwise suggest nitrogen sufficiency. Front Mar Sci 1:article 17. Scholar
  57. Glibert PM, Wilkerson F, Dugdale RC et al (2016) Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition with emphasis on nitrogen-enriched conditions. Limnol Oceanogr 61:165–197CrossRefGoogle Scholar
  58. Gobler CJ, Christopher J, Burkholder JM et al (2016) The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae 54:87–97CrossRefPubMedGoogle Scholar
  59. Goldman JC, Glibert PM (1983) Kinetics of inorganic nitrogen uptake. In: Carpenter EJ, Capone DG (eds) Nitrogen in the marine environment. Academic Press, New York, pp 233–274CrossRefGoogle Scholar
  60. Granéli E, Flynn K (2006) Chemical and physical factors influencing toxin content. In: Granéli E, Turner JT (eds) The ecology of harmful algae. Springer, New York, NY, pp 229–241CrossRefGoogle Scholar
  61. Hansen PJ (2011) The role of photosynthesis and food uptake for the growth of marine mixotrophic dinoflagellates. J Eukaryot Microbiol 58:203–214CrossRefPubMedGoogle Scholar
  62. Hardison DR, Sunda WG, Shea D et al (2013) Increased toxicity of Karenia brevis during phosphate limited growth: ecological and evolutionary implications. PLoS One 8(3):e58545. Scholar
  63. Hecky R, Kilham P (1988) Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnol Oceanogr 33:796–822Google Scholar
  64. Heisler J, Glibert PM, Burkholder JM et al (2008) Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8:3–13CrossRefPubMedPubMedCentralGoogle Scholar
  65. Hillebrand H, Steinert G, Boersma M et al (2013) Goldman revisited: faster-growing phytoplankton has lower N:P and lower stoichiometric flexibility. Limnol Oceanogr 58:2076–2088CrossRefGoogle Scholar
  66. Howarth RW (1988) Nutrient limitation of net primary production in marine ecosystems. Annu Rev Ecol Syst 19:89–110CrossRefGoogle Scholar
  67. Howarth RW, Marino R (2006) Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol Oceanogr 51:364–376CrossRefGoogle Scholar
  68. Howarth RW, Sharpley A, Walker D (2002) Sources of nutrient pollution to coastal waters in the United States: implications for achieving coastal water quality goals. Estuaries 25:656–676CrossRefGoogle Scholar
  69. Jeong HJ (2011) Mixotrophy in red tide algae Raphidophytes. J Eukaryot Microbiol 58:215–222CrossRefPubMedGoogle Scholar
  70. Jeong HJ, Park JY, Nho JH et al (2005) Feeding by red-tide dinoflagellates on the cyanobacterium Synechococcus. Aquat Microb Ecol 41:131–143CrossRefGoogle Scholar
  71. Jeong HJ, Yoo YD, Kim JS et al (2010) Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci J 45:65–91CrossRefGoogle Scholar
  72. Jeong HJ, Yoo YD, Kim TH et al (2004) Mixotrophy in the phototrophic harmful alga Cochlodinium polykrikoides (Dinophyceae): prey species, the effects of prey concentration and grazing impact. J Eukaryot Microbiol 51:563–569CrossRefPubMedGoogle Scholar
  73. Johansson N, Granéli E (1999) Influence of different nutrient conditions on cell density, chemical composition and toxicity of Prymnesium parvum (Haptophyta) in semi-continuous cultures. J Exp Mar Biol Ecol 239:243–258CrossRefGoogle Scholar
  74. Jones RI (1994) Mixotrophy in planktonic protists as a spectrum of nutritional strategies. Mar Microb Food Webs 8:87–96Google Scholar
  75. Kana TM, Glibert PM (2016) On saturating response curves from the dual perspectives of photosynthesis and nitrogen acquisition. In: Glibert PM, Kana TM (eds) Aquatic microbial ecology and biogeochemistry: a dual perspective. Springer International Publ., Geneva, pp 93–104CrossRefGoogle Scholar
  76. Kana TM, Geider RJ, Critchley C (1997) Photosynthetic pigment regulation in microalgae by multiple environmental factors: a dynamic balance hypothesis. New Phytol 137:629–638. Scholar
  77. Klausmeier CA, Litchman E, Daufresne T et al (2004) Optimal N:P stoichiometry of phytoplankton. Nature 429:171–174CrossRefPubMedGoogle Scholar
  78. Kudela RM, Raine R, Pitcher G et al (2018) Establishment, goals, and legacy of the Global Ecology and Oceanography of Harmful Algal Blooms (GEOHAB) Program. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 27–49CrossRefGoogle Scholar
  79. Leonardos N, Geider RJ (2004a) Responses of elemental and biochemical composition of Chaetoceros muelleri to growth under varying light and nitrate:phosphate supply ratios and their influence on critical N:P. Limnol Oceanogr 49:2105–2114CrossRefGoogle Scholar
  80. Leonardos N, Geider RJ (2004b) Effects of nitrate:phosphate supply ratio and irradiance on the C:N:P stoichiometry of Chaetoceros muelleri. Eur J Phycol 39:173–180CrossRefGoogle Scholar
  81. Litke DW (1999) Review of phosphorus control measures in the United States and their effects on water quality. U.S. Geological Survey Water–Resources Investigations Report 99-4007. Denver, COGoogle Scholar
  82. Lomas MW, Glibert PM (1999) Temperature regulation of nitrate uptake: a novel hypothesis about nitrate uptake and reduction in cool-water diatoms. Limnol Oceanogr 44:556–572CrossRefGoogle Scholar
  83. Menten L, Michaelis MI (1913) Die kinetik der invertinwirkung. Biochem Zeitung 49:333–369Google Scholar
  84. Minnhagen S, Kim M, Salomon P et al (2011) Active uptake of kleptoplastids by Dinophysis caudata from its ciliate prey Myrionecta rubra. Aquat Microb Ecol 62:99–108CrossRefGoogle Scholar
  85. Mitra A, Castellani C, Gentleman W et al (2014a) Bridging the gap between marine biogeochemical and fisheries sciences; configuring the zooplankton link. Prog Oceanogr 129B:176–199CrossRefGoogle Scholar
  86. Mitra A, Flynn KJ (2010) Modelling mixotrophy in harmful algal blooms: more or less the sum of the parts? J Mar Syst 83:158–169. Scholar
  87. Mitra A, Flynn KJ, Burkholder JM et al (2014b) The role of mixotrophic protists in the biological carbon pump. Biogeosciences 11:995–1005. Scholar
  88. Monod J (1942) Recherches sur la croissance des cultures bactériennes, 2nd edn. Hermann, ParisGoogle Scholar
  89. Nathansohn A (1908) Uber die allgemein Produktionsbedingungen im Meere, Beiträge zur biologie des planktons, von H.H. Gran und Nathansohn. Internationale Revue der gestanten. Hydrologie 1:38–72Google Scholar
  90. Navarro MT, Prieto R, Fernandez E et al (1996) Constitutive expression of nitrate reductase changes the regulation of nitrate and nitrite transporters in Chlamydomonas reinhardtii. Plant J 9:819–827CrossRefGoogle Scholar
  91. Oh H-M, Lee SJ, Jang M-H et al (2000) Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat. Appl Environ Microbiol 66:176–179CrossRefPubMedPubMedCentralGoogle Scholar
  92. Packard TT (1973) The light dependence of nitrate reductase in marine phytoplankton. Limnol Oceanogr 18:466–469CrossRefGoogle Scholar
  93. Paerl HW, Xu H, Hall NS et al (2014) Controlling cyanobacterial blooms in hypereutrophic Lake Taihu, China: will nitrogen reductions cause replacement of non-N2 fixing by N2 fixing taxa? PLoS One 9:e113123. Scholar
  94. Pahlow M, Oschlies A (2013) Optimal allocation backs Droop’s cell-quota model. Mar Ecol Prog Ser 473:1–5CrossRefGoogle Scholar
  95. Parker AE, Hogue VE, Wilkerson FP et al (2012) Inorganic nitrogen speciation and phytoplankton growth in the high nutrient, low chlorophyll San Francisco Estuary. Estuar Coast Shelf Sci 104-105:91–101CrossRefGoogle Scholar
  96. Peñuelas J, Sardans J, Rivas-Ubach A et al (2012) The human-induced imbalance between C, N and P in Earth’s life system. Glob Chang Biol 18:3–6CrossRefGoogle Scholar
  97. Podgórska A, Szal B (2015) The role of reactive oxygen species under ammonium nutrition. In: Gupta KJ, Igamberdiev AU (eds) Reactive oxygen and nitrogen species signaling and communication in plants. Springer, Heidelberg, pp 133–154Google Scholar
  98. Quigg A, Finkel ZV, Irwin AJ et al (2003) The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425:291–294CrossRefPubMedGoogle Scholar
  99. Raven JA, Beardall J, Flynn KJ et al (2009) Phagotrophy in the origins of photosynthesis in eukaryotes and as a complementary mode of nutrition in phototrophs: relation to Darwin’s insectivorous plants. J Exp Bot 60:3975–3987. Scholar
  100. Reynolds CS (1999) Non-determinism to probability, or N:P in the community ecology of phytoplankton. Arch Hydrobiol 146:23–35CrossRefGoogle Scholar
  101. Savage TJ, Smith GJ, Clark AT et al (2012) Condensation of the isoprenoid and amino precursors in the biosynthesis of domoic acid. Toxicon 59(1):25–33. Scholar
  102. Schindler DW (1977) Evolution of phosphorus limitation in lakes. Science 195:260–262CrossRefPubMedGoogle Scholar
  103. Schindler DW, Carpenter SR, Chapra SC et al (2016) Reducing phosphorus to curb lake eutrophication is a success. Environ Sci Technol.
  104. Smayda TJ (1990) Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In: Granéli E, Sundstöm B, Edler L et al (eds) Toxic marine phytoplankton. Elsevier, New York, NY, pp 29–40Google Scholar
  105. Smayda TJ (1997) Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol Oceanogr 42:1137–1153CrossRefGoogle Scholar
  106. Smith SL, Yamanaka Y, Pahlow M et al (2009) Optimal uptake kinetics: physiological acclimation explains the patterns of nitrate uptake by phytoplankton in the ocean. Mar Ecol Prog Ser 384:1–12CrossRefGoogle Scholar
  107. Stoecker DK, Tillmann U, Granéli E (2006) Phagotrophy in harmful algae. In: Granéli E, Turner JT (eds) The ecology of harmful algae. Springer, New York, NY, pp 177–187CrossRefGoogle Scholar
  108. Sutton MA, Bleeker A, Howard CM et al (2013) Our nutrient world: the challenge to produce more food and energy with less pollution. Centre for Ecology and Hydrology, EdinburghGoogle Scholar
  109. Tillmann U (1998) Phagotrophy by a plastidic haptophyte, Prymnesium patelliferum. Aquat Microb Ecol 14:155–160CrossRefGoogle Scholar
  110. Tilman D (1977) Resource competition between planktonic algae: an experimental and theoretical approach. Ecology 58:338–348CrossRefGoogle Scholar
  111. Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton, NJGoogle Scholar
  112. Tilman D (1985) The resource-ratio hypothesis of plant succession. Am Nat 125:827–852CrossRefGoogle Scholar
  113. Unrein F, Massana R, Alonso-Saez L et al (2007) Significant year-round effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal system. Limnol Oceanogr 52:456–469CrossRefGoogle Scholar
  114. Van de Waal DB, Smith VS, Declerck SAJ et al (2014) Stoichiometric regulation of phytoplankton toxins. Ecol Lett 17:736–742CrossRefPubMedGoogle Scholar
  115. Van de Waal DB, Verspagen JMH, Lürling M et al (2009) The ecological stoichiometry of toxins produced by harmful cyanobacteria: an experimental test of the carbon-nutrient balance hypothesis. Ecol Lett 12:1326–1335CrossRefPubMedGoogle Scholar
  116. Vézie C, Rapala J, Vaitomaa J et al (2002) Effect of nitrogen and phosphorus on growth of toxic and nontoxic Microcystis strains and on intracellular microcystin concentrations. Microb Ecol 43:443–454CrossRefPubMedGoogle Scholar
  117. Von Liebig, L (1855) Principles of agricultural chemistry with special reference to the late researches made in England [Reprinted in Pomeroy LR (ed) (1974) Cycles of essential elements, benchmark papers in ecology, vol I. Dowden, Hutchinson and Ross, Inc., Staussburg, PA, pp 11–28]Google Scholar
  118. Wells ML, Karlson B (2018) Harmful algal blooms in a changing ocean. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 77–90CrossRefGoogle Scholar
  119. Wilkerson FP, Dugdale RC, Hogue VE et al (2006) Phytoplankton blooms and nitrogen productivity in the San Francisco Bay. Estuar Coasts 29:401–416CrossRefGoogle Scholar
  120. Yoshiyama K, Sharp JH (2006) Phytoplankton response to nutrient enrichment in an urbanized estuary: apparent inhibition of primary production by overeutrophication. Limnol Oceanogr 51:424–434. Scholar
  121. Zubkov MV, Tarran GA (2008) High bacterivory by the smallest phytoplankton in the North Atlantic Ocean. Nature 455:224–226CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Patricia M. Glibert
    • 1
    Email author
  • Cynthia A. Heil
    • 2
  • Frances P. Wilkerson
    • 3
  • Richard C. Dugdale
    • 3
  1. 1.University of Maryland Center for Environmental Science, Horn Point LaboratoryCambridgeUSA
  2. 2.Bigelow Laboratory for Ocean SciencesEast BoothbayUSA
  3. 3.Romberg Tiburon CenterSan Francisco State UniversityTiburonUSA

Personalised recommendations