Emerging HAB Research Issues in Freshwater Environments

  • Michele A. BurfordEmail author
  • David P. Hamilton
  • Susanna A. Wood
Part of the Ecological Studies book series (ECOLSTUD, volume 232)


Freshwater harmful algal blooms (HABs) have been a major challenge for many decades, affecting water supplies, recreational use of water and aquatic ecosystems. The blooms of most concern, and that receive the greatest research attention, are toxic cyanobacteria. Much of the research focus has been on understanding the response of cyanobacterial species and communities to environmental conditions. As cyanobacteria are prokaryotes and have relatively simple genomes, they have been the focus of molecular studies that complement traditional ecological and physiological approaches. These complementary approaches have provided new insights into understanding how cyanobacteria species respond to environmental conditions. Molecular and physiological studies are increasingly focussed on strain variability and the implications for managing and modelling blooms and toxin production. Additionally, there have been substantial advances in techniques used to measure and monitor blooms including remote sensing, pigment sensors and molecular methods. Despite the research which has improved understanding of the physiology of cyanobacteria, and an enhanced ability to measure HABs at the scales needed to link environmental drivers and blooms, there has been a less rapid development of deterministic models. Improved coordination and collaboration amongst disciplines is essential to enhance our ability to predict the timing and extent of harmful cyanobacterial blooms.


  1. Aguirre-Gómez R, Salmerón-García O, Gómez-Rodríguez G et al (2016) Use of unmanned aerial vehicles and remote sensors in urban lakes studies in Mexico. Int J Remote Sens.
  2. Al-Tebrineh J, Pearson LA, Yasar SA et al (2012) A multiplex qPCR targeting hepato- and neurotoxigenic cyanobacteria of global significance. Harmful Algae 15:19–25CrossRefGoogle Scholar
  3. Amaral V, Bonilla S, Aubriot L (2014) Growth optimization of the invasive cyanobacterium Cylindrospermopsis raciborskii in response to phosphate fluctuations. Eur J Phycol 49:134–141CrossRefGoogle Scholar
  4. Aparicio Medrano E, Uittenbogaard RE, Dionisio Pires LM et al (2013) Coupling hydrodynamics and buoyancy regulation in Microcystis aeruginosa for its vertical distribution in lakes. Ecol Model 248:41–56CrossRefGoogle Scholar
  5. Bai F, Liu R, Yang Y et al (2014) Dissolved organic P use by the invasive freshwater diazotroph cyanobacterium. Cylindrospermopsis raciborskii. Harmful Algae 39:112–120CrossRefGoogle Scholar
  6. Bastien C, Cardin R, Veilleux E et al (2011) Performance evaluation of phycocyanin probes for monitoring of cyanobacteria. J Environ Monit 13:110–118PubMedCrossRefGoogle Scholar
  7. Berdalet E, Kudela R, Banas NS et al (2018) GlobalHAB: fostering international coordination on harmful algal bloom research in aquatic systems. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 425–447Google Scholar
  8. Berdalet E, Tester PA (2018) Key questions and recent research advances on harmful algal blooms in benthic systems. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 261–286Google Scholar
  9. Borges H, Wood SA, Puddick J et al (2016) Intracellular, environmental and biotic interactions influence recruitment of benthic Microcystis (Cyanophyceae) in a shallow eutrophic lake. J Plankton Res.
  10. Bowling LC, Baker PD (1996) Major cyanobacterial bloom in the Barwon-Darling River, Australia, in 1991, and underlying limnological conditions. Mar Freshw Res 47:643–657CrossRefGoogle Scholar
  11. Brasell K, Heath M, Ryan K et al (2015) Successional change in microbial communities of benthic Phormidium-dominated biofilms. Microb Ecol 69:254–266PubMedCrossRefGoogle Scholar
  12. Brookes JD, Cayelan CC (2011) Resilience to blooms. Science 334:46–47PubMedCrossRefGoogle Scholar
  13. Bullerjahn GS, Robert M, McKay A et al (2016) Global solutions to regional problems: Collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study. Harmful Algae 54:223–238PubMedPubMedCentralCrossRefGoogle Scholar
  14. Burford MA, Beardall J, Willis A et al (2016) Understanding the winning strategies used by the bloom forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae 54:44–53PubMedCrossRefGoogle Scholar
  15. Burford MA, Davis TW, Orr PT et al (2014) Nutrient-related changes in the toxicity of field blooms of the cyanobacterium Cylindrospermopsis raciborskii. FEMS Microbiol Ecol 89:135–148PubMedPubMedCentralCrossRefGoogle Scholar
  16. Burkholder JM, Glibert PM (2009) The importance of intraspecific variability in harmful algae – preface to a collection of topical papers. Harmful Algae 8:744–745CrossRefGoogle Scholar
  17. Carey CC, Ibelings BW, Hoffman EP et al (2012) Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res 46:1394–1407PubMedCrossRefGoogle Scholar
  18. Carraro E, Guyennon N, Hamilton D et al (2012) Coupling high-resolution measurements to a three-dimensional lake model to assess the spatial and temporal dynamics of the cyanobacterium Planktothrix rubescens in a medium-sized lake. Hydrobiologia 698:77–95CrossRefGoogle Scholar
  19. Cires S, Ballot A (2016) A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). Harmful Algae 54:21–43PubMedCrossRefGoogle Scholar
  20. Coles VJ, Hood RR (2016) Approaches and challenges for linking marine biogeochemical models with the “omics” revolution. In: Glibert PM, Kana TM (eds) Aquatic microbial ecology and biogeochemistry: a dual perspective. Springer, Cham, pp 45–63CrossRefGoogle Scholar
  21. Davidson K, Gowen R, Harrison P, Fleming L, Hoagland P, Moschonas G (2014) Anthropogenic nutrients and harmful algae in coastal waters. J Environ Manage 146:206–216PubMedCrossRefGoogle Scholar
  22. Davis TW, Berry DL, Boyer GL et al (2009) The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8:715–725CrossRefGoogle Scholar
  23. Davis TW, Harke MJ, Marcoval MA et al (2010) Effects of nitrogenous compounds and phosphorus on the growth of toxic and non-toxic strains of Microcystis during cyanobacterial blooms. Aquat Microb Ecol 61:149–162CrossRefGoogle Scholar
  24. Dodds WK, Bouska WW, Eitzmann JI et al (2008) Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environ Sci Technol 43:12–19CrossRefGoogle Scholar
  25. Dolman AM, Rücker J, Pick FR et al (2012) Cyanobacteria and cyanotoxins: the influence of N versus P. PLoS One 7(6):e38757. Scholar
  26. Domingues RB, Barbosa AB, Sommer U et al (2011) Ammonium, nitrate and phytoplankton interactions in a freshwater tidal estuarine zone: potential effects of cultural eutrophication. Aquat Sci 73:331–343CrossRefGoogle Scholar
  27. Dowle E, Pochon X, Banks J et al (2016) Targeted gene enrichment and high throughput sequencing for environmental biomonitoring: a case study using freshwater macroinvertebrates. Mol Ecol Resour 16:1240–1254PubMedCrossRefGoogle Scholar
  28. Downing JA, Watson SB, McCauley E (2001) Predicting cyanobacteria dominance in lakes. Can J Fish Aquat Sci 58:1905–1908CrossRefGoogle Scholar
  29. Echenique-Subiabre I, Dalle C et al (2016) Application of a spectrofluorimetric tool (BBE BenthoTorch) for the monitoring of potentially toxic benthic cyanobacteria in rivers. Water Res 101:341–350PubMedCrossRefGoogle Scholar
  30. Fetscher AE, Howard MDA, Stancheva R et al (2015) Wadeable streams as widespread sources of benthic cyanotoxins in California, USA. Harmful Algae 49:105–116CrossRefGoogle Scholar
  31. Finlay K, Patoine A, Donald D et al (2010) Experimental evidence that pollution with urea can degrade water quality in phosphorus-rich lakes of the Northern Great Plains. Limnol Oceanogr 55:1213–1230CrossRefGoogle Scholar
  32. Franks PJS (2018) Recent advances in modelling of harmful algal blooms. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 359–377Google Scholar
  33. Garcia-Pichel F, Wojciechowski MF (2009) The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates. PLoS One 4(11):e7801. Scholar
  34. Glibert PM, Al-Azri A, Allen JI et al (2018a) Key questions and recent research advances on harmful algal blooms in relation to nutrients and eutrophication. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 229–259Google Scholar
  35. Glibert PM, Allen JI, Bouwman AF et al (2010) Modeling of HABs and eutrophication: status, advances, challenges. J Mar Syst 83:262–275CrossRefGoogle Scholar
  36. Glibert PM, Beusen AHW, Harrison JA et al (2018b) Changing land, sea- and airscapes: sources of nutrient pollution affecting habitat suitability for harmful algae. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 53–76Google Scholar
  37. Glibert PM, Burford MA (2017) Globally changing nutrient loads and harmful algal blooms: recent advances, new paradigms, and continuing challenges. Oceanography 30(1):58–69CrossRefGoogle Scholar
  38. Glibert PM, Pitcher GC, Bernard S et al (2018c) Advancements and continuing challenges of emerging technologies and tools for detecting harmful algal blooms, their antecedent conditions and toxins, and applications in predictive models. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 339–357Google Scholar
  39. Glibert PM, Wilkerson FP, Dugdale RC et al (2016) Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions. Limnol Oceanogr 61:165–197CrossRefGoogle Scholar
  40. Gobler CJ, Burkholder JM, Davis TW et al (2016) The dual role of N supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae 54:87–97PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gugger M, Lenoir S, Berger C et al (2005) First report in a river in France of the benthic cyanobacterium Phormidium favosum producing anatoxin-a associated with dog neurotoxicosis. Toxicon 45(7):919–928PubMedCrossRefGoogle Scholar
  42. Hamilton DP, Carey CC, Arvola L et al (2014a) A Global Lake Ecological Observatory Network (GLEON) for synthesising high–frequency sensor data for validation of deterministic ecological models. Inland Waters 5:49–56CrossRefGoogle Scholar
  43. Hamilton DP, Salmaso N, Paerl HW (2016) Mitigating harmful cyanobacterial blooms: strategies for control of nitrogen and phosphorus loads. Aquat Ecol 50(3):351–366CrossRefGoogle Scholar
  44. Hamilton DP, Wood SA, Dietrich DR et al (2014b) Costs of harmful blooms of freshwater cyanobacteria. In: Sharma NK, Rai AK, Stal LJ (eds) Cyanobacteria: an economic perspective, 1st edn. Wiley, New York, pp 245–256Google Scholar
  45. Harke MJ, Gobler CJ (2013) Global transcriptional responses of the toxic cyanobacterium, Microcystis aeruginosa, to N stress, P stress, and growth on organic matter. PLoS One 8(7):e69834. Scholar
  46. Harke MJ, Gobler CJ (2015) Daily transcriptome changes reveal the role of N in controlling microcystin synthesis and nutrient transport in the toxic cyanobacterium, Microcystis aeruginosa. BMC Genomics 16:1068PubMedPubMedCentralCrossRefGoogle Scholar
  47. Harke MJ, Steffen MM, Gobler CJ et al (2016) A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54:4–20PubMedCrossRefGoogle Scholar
  48. Harris TD, Smith VH, Graham JL et al (2016) Combined effects of N and P and nitrate to ammonia ratios on cyanobacterial metabolite concentrations in eutrophic Midwestern USA reservoirs. Inland Waters 6:199–210CrossRefGoogle Scholar
  49. Hellweger FL (2015) 100 Years since Streeter and Phelps: it is time to update the biology in our water quality models. Environ Sci Technol 49:6372–6373PubMedCrossRefGoogle Scholar
  50. Hellweger FL, Fredrick ND, McCarthy MJ et al (2016) Dynamic, mechanistic, molecular-level modelling of cyanobacteria: Anabaena and N interaction. Environ Microbiol 18:2721–2731PubMedCrossRefGoogle Scholar
  51. Hellweger FL, Kravchuk ES, Novotny V et al (2008) Agent-based modeling of the complex life cycle of a cyanobacterium (Anabaena) in a shallow reservoir. Limnol Oceanogr 53:1227–1241CrossRefGoogle Scholar
  52. Hemple SME, Heath MW, Olds J et al (2014) Monitoring benthic Phormidium blooms using imagery gathered with an unmanned aerial vehicle. Greater Wellington Regional Council. Victoria University Report. June 2014, 26 ppGoogle Scholar
  53. Hense I, Burchard H (2010) Modelling cyanobacteria in shallow coastal seas. Ecol Model 221:238–244CrossRefGoogle Scholar
  54. Huisman J, Sharples J, Stroom J et al (2004) Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85:2960–2970CrossRefGoogle Scholar
  55. Humbert JF, Quiblier C, Gugger M (2010) Molecular approaches for monitoring potential toxic marine and freshwater phytoplankton species. Anal Bioanal Chem 397:1723–1732PubMedCrossRefGoogle Scholar
  56. Hunter PD, Tyler AN, Willby NJ et al (2008) The spatial dynamics of vertical migration by Microcystis aeruginosa in a eutrophic shallow lake: a case study using high spatial resolution time-series airborne remote sensing. Limnol Oceanogr 53:2391–2406CrossRefGoogle Scholar
  57. Hunter PD, Tyler AN, Carvalho L et al (2010) Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes. Remote Sens Environ 114:2705–2718CrossRefGoogle Scholar
  58. Ibelings BW, Vonk M, Los FH et al (2003) Fuzzy modeling of cyanobacterial surface waterblooms: validation with NOAA-AVHRR satellite images. Ecol Appl 13:1456–1472CrossRefGoogle Scholar
  59. Islam M, Kitazawa D, Park H (2012) Numerical modeling on toxin produced by predominant species of cyanobacteria within the ecosystem of Lake Kasumigaura, Japan. Procedia Environ Sci 13:166–193CrossRefGoogle Scholar
  60. Izaguirre G, Taylor WD (2007) Geosmin and MIB events in a new reservoir in southern California. Water Sci Technol 55:9–14PubMedCrossRefGoogle Scholar
  61. Izydorczyk K, Tarczynska M, Jurczak T et al (2005) Measurement of phycocyanin fluorescenceas an online early warning system for cyanobacteria in reservoir intake water. Environ Toxicol 20:425–430PubMedCrossRefGoogle Scholar
  62. Kardinaal WEA, Janse I, Kamst-van Agterveld MP et al (2007) Microcystis genotype succession in relation to microcystin concentrations in freshwater lakes. Aquat Microb Ecol 2(48):1–12CrossRefGoogle Scholar
  63. Kasinak J, Holt BM, Chrislock ME et al (2015) Benchtop fluorometry of phycocyanin as a rapid approach for estimating cyanobacterial biovolume. J Plankton Res 37:248–257CrossRefGoogle Scholar
  64. Kleinteich J, Hildebrand F, Wood SA et al (2014) Diversity of toxin and non-toxin containing cyanobacterial mats of meltwater ponds on the Antarctic Peninsula: a pyrosequencing approach. Antarct Sci 26:521–532CrossRefGoogle Scholar
  65. Kong Y, Lou I, Zhang Y et al (2014) Using an online fluorescence probe for rapid monitoring of cyanobacteria in Macau freshwater reservoir. Hydrobiologia 741:33–49CrossRefGoogle Scholar
  66. Kreft J-U, Plugge CM, Grimm V et al (2013) Mighty small: observing and modeling individual microbes becomes big science. Proc Natl Acad Sci USA 110:18027–18028PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kromkamp J, Walsby AE (1990) A computer model of buoyancy and vertical migration in cyanobacteria. J Plankton Res 12:161–183CrossRefGoogle Scholar
  68. Kudela R, Palacios SL, Austerberry DC (2015) Application of hyperspectral remote sensing to cyanobacterial blooms in inland waters. Remote Sens Environ 167:196–205CrossRefGoogle Scholar
  69. Kudela RM, Raine R, Pitcher G et al (2018) Establishment, goals, and legacy of the Global Ecology and Oceanography of Harmful Algal Blooms (GEOHAB) Program. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 27–49Google Scholar
  70. Kumagai M, Nakano S, Jiao C et al (2000) Effect of cyanobacterial blooms on thermal stratification. Limnology 1:191–195CrossRefGoogle Scholar
  71. Kurmayer R, Deng L, Entfellner E (2016) Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria. Harmful Algae 54:69–86PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kurmayer R, Sivonen K, Wilmotte A et al (2017) Molecular tools for the detection and quantification of toxigenic cyanobacteria. Wiley, Hoboken, NJ, 276 pGoogle Scholar
  73. Lage S, Burian A, Rasmussne U et al (2016) BMAA extraction of cyanobacteria samples: which method to choose? Environ Sci Pollut Res 23(1):338–350CrossRefGoogle Scholar
  74. Lakeman MB, von Dassow P, Cattolico RA (2009) The strain concept in phytoplankton ecology. Harmful Algae 8:746–758CrossRefGoogle Scholar
  75. Li X, Dreher TW, Li R (2016) An overview of diversity, occurrence, genetics and toxin production of bloom-forming Dolichospermum (Anabaena) species. Harmful Algae 54:54–68PubMedCrossRefGoogle Scholar
  76. Lurling M, Eshetu F, Faassen EJ et al (2012) Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshw Biol 58:552–559CrossRefGoogle Scholar
  77. Lv J, Wu H, Chen M (2011) Effects of nitrogen and phosphorus on phytoplankton composition and biomass in 15 subtropical, urban shallow lakes in Wuhan, China. Limnologica 41:48–56CrossRefGoogle Scholar
  78. Marinho MM, Gonçalves Souza MV, Lürling M (2013) Light and phosphate competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa is strain dependent. Microb Ecol 66:479–488PubMedCrossRefGoogle Scholar
  79. Matthews MW, Bernard S, Robertson L (2012) A new algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in coastal and inland waters from MERIS. Remote Sens Environ 124:637–652CrossRefGoogle Scholar
  80. McAllister TG, Wood SA, Hawes I (2016) The rise of toxic benthic Phormidium proliferations: a review of their taxonomy, distribution, toxin content and factors regulating prevalence and increased severity. Harmful Algae 55:282–294PubMedCrossRefGoogle Scholar
  81. Mez K, Hanselmann K, Preisig HR (1998) Environmental conditions in high mountain lakes containing toxic benthic cyanobacteria. Hydrobiologia 368(1–3):1–15CrossRefGoogle Scholar
  82. Mowe MAD, Mitrovic SM, Lim RP et al (2015) Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors. J Limnol 74:205–224Google Scholar
  83. Nilsson RH, Ryberg M, Kristiansson E et al (2006) Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLoS One 1(1):e59. Scholar
  84. O’Neil JM, Davis TW, Burford MA et al (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334CrossRefGoogle Scholar
  85. Oh H-M, Lee SJ, Jang M-H, Yoon B-D (2000) Microcystin production by Microcystis aeruginosa in a P-limited chemostat. Appl Environ Microbiol 66:176–179PubMedPubMedCentralCrossRefGoogle Scholar
  86. Oliver R, Hamilton DP, Brookes J et al (2012) Physiology, blooms and prediction of planktonic cyanobacteria. In: Whitton BA (ed) Ecology of cyanobacteria II: their diversity in space and time. Springer, New York, pp 155–194CrossRefGoogle Scholar
  87. Orihel DM, Schindler DW, Ballard NC et al (2015) The “nutrient pump:” Iron-poor sediments fuel low nitrogen-to-phosphorus ratios and cyanobacterial blooms in polymictic lakes. Limnol Oceanogr 60:856–871CrossRefGoogle Scholar
  88. Paerl HW (2014) Mitigating harmful cyanobacterial blooms in a human- and climatically-impacted world. Life 4(4):988–1012PubMedPubMedCentralCrossRefGoogle Scholar
  89. Paerl HW, Huisman J (2008) Climate - blooms like it hot. Science 320:57–58PubMedCrossRefGoogle Scholar
  90. Prentice MJ, O’Brien KR, Hamilton DP et al (2015) High-and low-affinity phosphate uptake and its effect on phytoplankton dominance in a phosphate-depauperate lake. Aquat Microb Ecol 75:139–153CrossRefGoogle Scholar
  91. Puddick J, Prinsep MR, Wood SA et al (2016a) Modulation of microcystin congener abundance following N depletion of a Microcystis batch culture. Aquat Ecol 50:235–246CrossRefGoogle Scholar
  92. Puddick J, Wood SA, Hawes I et al (2016b) Fine-scale cryogenic sampling of planktonic microbial communities: application to toxic cyanobacterial blooms. Limnol Oceanogr Methods 14:600–609CrossRefGoogle Scholar
  93. Quiblier C, Wood SA, Echenique-Subiabre I et al (2013) A review of current knowledge on toxic benthic freshwater cyanobacteria–ecology, toxin production and risk management. Water Res 47:5464–5479CrossRefGoogle Scholar
  94. Reynolds CS (2006) Ecology of phytoplankton. Cambridge University Press, Cambridge, p 535.
  95. Rose KC, Weathers KC, Hetherington AL et al (2016) Insights from the Global Lake Ecological Observatory Network (GLEON). Inland Waters 6:476–482CrossRefGoogle Scholar
  96. Rowe MD, Anderson EJ, Wynne TT et al (2016) Vertical distribution of buoyant Microcystis blooms in a Lagrangian particle tracking model for short-term forecasts in Lake Erie. J Geophys Res Oceans 121:5296–5314CrossRefGoogle Scholar
  97. Schagerl M, Müller B (2006) Acclimation of chlorophyll a and carotenoid levels to different irradiances in four freshwater cyanobacteria. J Plant Physiol 163:709–716PubMedCrossRefGoogle Scholar
  98. Scott JT, McCarthy MJ (2010) N fixation may not balance the N pool of lakes over timescales relevant to eutrophication management. Limnol Oceanogr 55:1265–1270CrossRefGoogle Scholar
  99. Shokralla S, Spall JL, Gibson JF et al (2012) Next generation sequencing technologies for environmental DNA research. Mol Ecol 21:1794–1805PubMedPubMedCentralCrossRefGoogle Scholar
  100. Smith F, Wood SA, Wilks T et al (2012) Survey of Scytonema (Cyanobacteria) and associated saxitoxins in the littoral zone of recreational lakes in Canterbury (New Zealand). Phycologia 51:542–551CrossRefGoogle Scholar
  101. Smith VH, Wood SA, McBride CG et al (2016) P and N loading restraints are essential for successful eutrophication control of Lake Rotorua, New Zealand. Inland Waters 6(2):273–283CrossRefGoogle Scholar
  102. Solomon C, Glibert P (2008) Urease activity in five phytoplankton species. Aquat Microb Ecol 52:149–157CrossRefGoogle Scholar
  103. Stucken K, John U, Cembella A et al (2010) The smallest known genomes of multicellular and toxic cyanobacteria: comparison, minimal gene sets for linked traits and the evolutionary implications. PLoS One 5:e9235. Scholar
  104. Taberlet P, Coissac E, Pompanon F et al (2012) Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol 21:2045–2050PubMedPubMedCentralCrossRefGoogle Scholar
  105. Toming K, Kutser T, Laas A et al (2016) First experiences in mapping lake water quality parameters with Sentinel-2 MSI Imagery. Remote Sens 8:640CrossRefGoogle Scholar
  106. Vaitomaa J, Rantala A, Halinen K et al (2003) Quantitative real-time PCR for determination of microcystin synthetase E copy numbers for Microcystis and Anabaena in lakes. Appl Environ Microb 69:7289–7297CrossRefGoogle Scholar
  107. Van de Waal DB, Verspagen JM, Lürling M et al (2009) The ecological stoichiometry of toxins produced by harmful cyanobacteria: an experimental test of the carbon-nutrient balance hypothesis. Ecol Lett 12:1326–1335PubMedPubMedCentralCrossRefGoogle Scholar
  108. Van der Merwe D, Price KP (2015) Harmful algal bloom characterization at ultra-high spatial and temporal resolution using small unmanned aircraft systems. Toxins 7:1065–1078PubMedPubMedCentralCrossRefGoogle Scholar
  109. Van Mooy BAS, Fredricks HF, Pedler BE et al (2009) Phytoplankton in the ocean substitute lipids in response to P scarcity. Nature 458:69–72PubMedCrossRefGoogle Scholar
  110. Vezie C, Brient L, Sivonen K et al (1998) Variation of microcystin content of cyanobacterial blooms and isolated strains in Grand-Lieu lake (France). Microb Ecol 35:126–135PubMedCrossRefGoogle Scholar
  111. Vintila S, El-Shehawy R (2007) Ammonium ions inhibit N fixation but do not affect heterocyst frequency in the bloom-forming cyanobacterium Nodularia spumigena strain AV1. Microbiology 153:3704–3712PubMedCrossRefGoogle Scholar
  112. Vintila S, Jonasson S, Wadensten H et al (2010) Proteomic profiling of the Baltic Sea cyanobacterium Nodularia spumigena strain AV1 during ammonium supplementation. J Proteomics 73(9):1670–1679PubMedCrossRefGoogle Scholar
  113. Visser PM, Verspagen JMH, Sandrini G et al (2016) How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 54:145–159PubMedPubMedCentralCrossRefGoogle Scholar
  114. Wagner C, Adrian R (2009) Cyanobacteria dominance: quantifying the effects of climate change. Limnol Oceanogr 54:2460–2468CrossRefGoogle Scholar
  115. Wallace BB, Hamilton DP (2000) Simulation of water bloom formation in the cyanobacterium Microcystis aeruginosa. J Plankton Res 22:1127–1138CrossRefGoogle Scholar
  116. Welker M, Sejnohova D, von Dohren H et al (2007) Seasonal shifts in chemotype composition of Microcystis sp. Communities in the pelagial and the sediment of a shallow reservoir. Limnol Oceanogr 52:609–619CrossRefGoogle Scholar
  117. Wells ML, Karlson B (2018) Harmful algal blooms in a changing ocean. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 77–90Google Scholar
  118. Willis A, Adams MP, Chuang AW et al (2015) Constitutive toxin production and different optimal N concentrations leads to variation in toxin yield with three ecotypes of Cylindrospermopsis raciborskii ((Woloszynska) Seenayya et Subba Raju). Harmful Algae 47:27–34CrossRefGoogle Scholar
  119. Willis A, Chuang AW, Burford MA (2016a) N fixation by the reluctant diazotroph Cylindrospermopsis raciborskii (Cyanophyceae). J Phycol 52:854–862PubMedCrossRefGoogle Scholar
  120. Willis A, Chuang AW, Woodhouse JN et al (2016b) Intraspecific variation in growth, morphology and toxin quotas for the cyanobacterium Cylindrospermopsis raciborskii. Toxicon 119:307–310PubMedCrossRefGoogle Scholar
  121. Willis A, Posselt AJ, Burford MA (2017) Cylindrospermopsis raciborskii is highly adapted to very low P. Eur J Phycol. Scholar
  122. Wood SA, Puddick J, Borges H et al (2015) Potential effects of climate change on cyanobacterial toxin production. In: Botana LM, Louzao C, Vilariño N et al (eds) Climate change and marine and freshwater toxins. Springer, Berlin, pp 155–180Google Scholar
  123. Wood SA, Rueckert A, Hamilton DP et al (2011) Switching toxin production on and off: intermittent microcystin synthesis in a Microcystis bloom. Environ Microbiol Rep 3:118–124PubMedCrossRefGoogle Scholar
  124. Wood SA, Selwood AI, Rueckert A et al (2007) First report of homoanatoxin-a and associated dog neurotoxicosis in New Zealand. Toxicon 50:292–301PubMedCrossRefGoogle Scholar
  125. Wu Z, Zeng B, Li R et al (2011) Physiological regulation of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) in response to inorganic P limitation. Harmful Algae 15:53–58CrossRefGoogle Scholar
  126. Wynne TT, Stumpf RP, Tomlinson MC et al (2008) Relating spectral shape to cyanobacterial blooms in the Laurentian Great Lakes. Int J Remote Sens 29:3665–3672CrossRefGoogle Scholar
  127. Zamyadi A, Mcquaid N, Prevost M et al (2012) Monitoring of potentially toxic cyanobacteria using an online multi-probe in drinking water sources. J Environ Monit 14:579–588PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Michele A. Burford
    • 1
    Email author
  • David P. Hamilton
    • 1
    • 2
  • Susanna A. Wood
    • 2
    • 3
  1. 1.Australian Rivers InstituteGriffith UniversityNathanAustralia
  2. 2.Environmental Research InstituteUniversity of WaikatoHamiltonNew Zealand
  3. 3.Cawthron InstituteNelsonNew Zealand

Personalised recommendations