Key Questions and Recent Research Advances on Harmful Algal Blooms in Relation to Nutrients and Eutrophication

  • Patricia M. GlibertEmail author
  • Adnan Al-Azri
  • J. Icarus Allen
  • Alexander F. Bouwman
  • Arthur H. W. Beusen
  • Michele A. Burford
  • Paul J. Harrison
  • Mingjiang Zhou
Part of the Ecological Studies book series (ECOLSTUD, volume 232)


The Core Research Project on HABs in Eutrophic Systems was one of the projects implemented under the Global Ecology and Oceanography of Harmful Algal Blooms (GEOHAB) program. Building on several Open Science Meetings and associated international efforts, this project focused on a number of key questions that related to the types of harmful algal species found in eutrophic systems, the drivers of nutrient changes and their effects, as well as interactions with community composition of all members of the food web. Substantial progress was made on all of the identified key questions and that progress is reviewed in this chapter. In all, the evidence is unequivocal that harmful algae can be directly and/or indirectly stimulated by nutrient over-enrichment and that chronic, subtle effects, such as changes in nutrient proportion or form, can be equally important or even more important than the obvious, acute effects. Furthermore, nutrient enrichment interacts with other major drivers, such as hydrology, food web interactions, and climate change, in both direct and indirect ways. Many questions remain, however. Much needs to be done in parameterizing rates, characterizing traits, and how they are both externally driven and internally dynamically regulated. Many species are understudied. Work needs to advance in understanding the physiological responses to excess nutrient availability and relationships with toxicity, among other physiological processes. A new emphasis on improved model formulations is needed, linking land-use models with regional ocean models and that incorporate dynamic physiological behavior. Given the pace at which nutrient loads continue to pollute the global landscape and the global expansion of HABs, continued international collaborative efforts in understanding changing nutrients and their relationships with HABs are not only necessary, but urgently needed.



This is a contribution of the GEOHAB Core Research project on HABs in Eutrophic Systems and of SCOR WG 132 on Land-Based Nutrient Pollution and Harmful Algal Blooms. It is contribution number 5407 from the University of Maryland Center for Environmental Science.


  1. Adolf JE, Bachvaroff T, Place AR (2008a) Cryptophyte abundance drives blooms of mixotrophic harmful algae: a hypothesis based on Karlodinium veneficum as a model system. Harmful Algae 8:119–128CrossRefGoogle Scholar
  2. Adolf JE, Bachvaroff T, Place AR (2008b) Can cryptophytes trigger toxic Karlodinium veneficum blooms in eutrophic estuaries? Harmful Algae 81:19–128Google Scholar
  3. Al-Azri A, Piontkovski SA, Al-Hashmi KA et al (2014) Mesoscale and nutrient conditions associated with the massive 2008 Cochlodinium polykrikoides bloom in the Sea of Oman/Arabian Gulf. Estuar Coasts 37:325–338CrossRefGoogle Scholar
  4. Allen JI, Polimene L (2011) Linking physiology to ecology: towards a new generation of plankton models. J Plankton Res 33:989–997. Scholar
  5. Alonso-Rodríguez R, Páez-Osuna F (2003) Nutrients, phytoplankton and harmful algal blooms in shrimp ponds: a review with special reference to the situation in the Gulf of California. Aquaculture 219:317–336CrossRefGoogle Scholar
  6. Alvarez-Salgado XA, Figueiras FG, Perez FF et al (2003) The Portugal coastal counter current of NW Spain: new insights on its biogeochemical variability. Prog Oceanogr 56:281–321CrossRefGoogle Scholar
  7. Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25:562–584CrossRefGoogle Scholar
  8. Azanza RV, Fukuyo Y, Yap LG et al (2005) Prorocentrum minimum bloom and its possible link to a massive fish kill in Bolinae, Pangasian, northern Philippines. Harmful Algae 4:519–524CrossRefGoogle Scholar
  9. Bates SS, de Freitas ASW, Milley JE et al (1991) Controls on domoic acid production by the diatom Nitzschia pungens c.f. multiseries in culture: nutrients and irradiance. Can J Fish Aquat Sci 48:1136–1144CrossRefGoogle Scholar
  10. Beusen AHW, Bouwman AF, Van Beek LPH et al (2016) Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences 13:2441–2451. Scholar
  11. Beusen AHW, Van Beek LPH, Bouwman AF et al (2015) Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water. Description of IMAGE-GNM and analysis of performance. Geosci Model Dev 8:4045–4067. Scholar
  12. Bond NA, Cronin MF, Freeland H et al (2015) Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys Res Lett 42:3414–3420CrossRefGoogle Scholar
  13. Bouwman AF, Beusen AHW, Glibert PM et al (2013a) Mariculture: significant and expanding cause of coastal nutrient enrichment. Environ Res Lett 8(044026):5. Scholar
  14. Bouwman AF, Beusen AHW, Lassaletta L et al (2017) Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Sci Rep.
  15. Bouwman AF, Beusen AHW, Overbeek CC et al (2013b) Hindcasts and future projections of global inland and coastal nitrogen and phosphorus loads due to finfish aquaculture. Rev Fish Sci 21:112–158CrossRefGoogle Scholar
  16. Bouwman AF, Pawlowski M, Liu C et al (2011) Global hindcasts and future projections of coastal nitrogen and phosphorus loads due to shellfish and seaweed aquaculture. Rev Fish Sci 19:331–357CrossRefGoogle Scholar
  17. Boyd PW, Doney SC (2003) The impact of climate change and feedback processes on the ocean carbon cycle. In: Fasham MJR (ed) Ocean biogeochemistry – the role of the ocean carbon cycle in global change. Springer, Berlin, pp 157–193Google Scholar
  18. Boyd PW, Hutchins DA (2012) Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change. Mar Ecol Prog Ser 470:125–135CrossRefGoogle Scholar
  19. Bricker SB, Longstaff B, Dennison W et al (2007) Effects of nutrient enrichment in the Nation’s estuaries: a decade of change, NOAA coastal ocean program decision analysis series No. 26. National Center for Coastal Ocean Science, Silver Spring, MD, p 328Google Scholar
  20. Burford MA, Davis TW, Orr PT et al (2014) Nutrient-related changes in the toxicity of field blooms of the cyanobacterium Cylindrospermopsis raciborskii. FEMS Microbiol Ecol 89:135–148PubMedCrossRefGoogle Scholar
  21. Burford MA, Longmore AR (2001) High ammonium production from sediments in hypereutrophic aquaculture ponds. Mar Ecol Prog Ser 224:187CrossRefGoogle Scholar
  22. Burford MA, Pearson D (1998) Effect of different nitrogen sources on phytoplankton composition in aquaculture ponds. Aquat Microb Ecol 15:277–284CrossRefGoogle Scholar
  23. Burford MA, Williams KC (2001) The fate of nitrogenous waste from shrimp feeding. Aquaculture 198:79–93CrossRefGoogle Scholar
  24. Burkholder JM, Dickey DA, Kinder C et al (2006) Comprehensive trend analysis of nutrients and related variables in a large eutrophic estuary: a decadal study of anthropogenic and climatic influences. Limnol Oceanogr 51:463–487CrossRefGoogle Scholar
  25. Burkholder JM, Eggleston D, Glasgow H et al (2004) Comparative impacts of two major hurricane seasons on the Neuse River and western Pamlico Sound ecosystems. Proc Natl Acad Sci USA 101:9291–9296PubMedPubMedCentralCrossRefGoogle Scholar
  26. Burkholder JM, Glibert PM, Skelton H (2008) Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8:77–93CrossRefGoogle Scholar
  27. Burkholder JM, Shumway SE, Glibert PM (2018) Food webs and ecosystem impacts of harmful algae. In: Shumway S, Burkholder JM, Morton SL (eds) Harmful algal blooms: a compendium desk reference. WileyGoogle Scholar
  28. Buskey EJ, Liu H, Collumb C et al (2001) The decline and recovery of a persistent Texas brown tide algal bloom in the Laguna Madre (Texas, USA). Estuaries 24:337–346CrossRefGoogle Scholar
  29. Cannon JA (1990) Development and dispersal of red tides in the Port River, South Australia. In: Granéli E, Sundstroem B, Edler L et al (eds) Toxic marine phytoplankton. Elsevier, New York, pp 110–115Google Scholar
  30. Chen C-C, Gong G-C, Shiah F-K (2007) Hypoxia in the East China Sea: one of the largest coastal low oxygen areas in the world. Mar Environ Res 64:399–408PubMedCrossRefGoogle Scholar
  31. Cloern JE (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210:223–253CrossRefGoogle Scholar
  32. Davis TL, Berry DL, Boyer GL et al (2009) The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8:715–725CrossRefGoogle Scholar
  33. Doney SC (2010) The growing human footprint on coastal and open ocean biogeochemistry. Science 328:1512–1516PubMedPubMedCentralCrossRefGoogle Scholar
  34. Duan SW, Liang T, Zhang S et al (2008) Seasonal changes in nitrogen and phosphorus transport in the lower Changjiang River before the construction of the Three Gorges Dam. Estuar Coast Shelf Sci 79:239–250CrossRefGoogle Scholar
  35. Dumont E, Harrison JA, Kroeze C et al (2005) Global distribution and sources of dissolved inorganic nitrogen export to the coastal zone: results from a spatially explicit, global model. Global Biogeochem Cycles 19:GB4S02CrossRefGoogle Scholar
  36. Dürr HH, Laruelle GG, van Kempen CM et al (2011) Worldwide typology of nearshore coastal sys tems: defining the estuarine filter of river inputs to the oceans. Estuar Coasts 34:441–458CrossRefGoogle Scholar
  37. Elser JJ, Sterner RW, Gorokhova E et al (2000) Biological stoichiometry from genes to ecosystems. Ecol Lett 3:540–550CrossRefGoogle Scholar
  38. Fang TH (2004) Phosphorus speciation and budget of the East China Sea. Cont Shelf Res 24:1285–1299CrossRefGoogle Scholar
  39. Flynn KA, Clark DR, Mitra A et al (2015) Ocean acidification with (de)eutrophication will alter future phytoplankton growth and succession. Philos Trans R Soc B 282:20142604Google Scholar
  40. Flynn KJ, Mitra A, Glibert PM et al (2018) Mixotrophy by HABs: by whom, on whom, when, why and what next. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 113–132CrossRefGoogle Scholar
  41. Flynn KJ, Stoecker DK, Mitra A et al (2013) Misuse of the phytoplankton-zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. J Plankton Res 35:3–11CrossRefGoogle Scholar
  42. Freeland H, Whitney F (2014) Unusual warming in the Gulf of Alaska. North Pac Mar Org (PICES) Press 22:51–52Google Scholar
  43. Fu M, Wang Z, Pu X et al (2012) Changes in nutrient concentrations and N:P:Si ratios and their possible impacts on the Huanghai Sea ecosystem. Acta Oceanol Sinica 31:101–112CrossRefGoogle Scholar
  44. Galloway JN, Cowling EB, Seitzinger SP et al (2002) Reactive nitrogen: too much of a good thing? Ambio 31:60–63PubMedPubMedCentralCrossRefGoogle Scholar
  45. GEOHAB (2001) Global ecology and oceanography of harmful algal blooms, science plan. Glibert P, Pitcher G (eds) SCOR and IOC, Baltimore and Paris, 86 ppGoogle Scholar
  46. GEOHAB (2005) Global ecology and oceanography of harmful algal blooms: HABs in eutrophic systems. Glibert PM (ed) IOC and SCOR, Paris and Baltimore, 74 ppGoogle Scholar
  47. GEOHAB (2010) Global ecology and oceanography of harmful algal blooms in Asia. Furuya K, Glibert PM, Zhou M et al (eds) IOC and SCOR, Paris and Newark, Delaware, 68 ppGoogle Scholar
  48. Glibert PM (1998) Interactions of top-down and bottom-up control in planktonic nitrogen cycling. Hydrobiology 363:1–12CrossRefGoogle Scholar
  49. Glibert PM (2017) Eutrophication, harmful algae and biodiversity – challenging paradigms in a world of complex nutrient changes. Mar Pollut Bull 124:591–606. Scholar
  50. Glibert PM, Allen JI, Artioli Y et al (2014b) Vulnerability of coastal ecosystems to changes in harmful algal bloom distribution in response to climate change: projections based on model ana lysis. Glob Chang Biol 20:3845–3858. Scholar
  51. Glibert PM, Beusen AHW, Harrison JA et al (2018) Changing land-, sea- and airscapes: sources of nutrient pollution affecting habitat suitability for harmful algae. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 53–76CrossRefGoogle Scholar
  52. Glibert PM, Boyer J, Heil C et al (2010) Blooms in lagoons: different from those of river-dominated estuaries. In: Kennish M, Paerl H (eds) Coastal lagoons: critical habitats of environmental change. Taylor and Francis, Boca Raton, FL, pp 91–114CrossRefGoogle Scholar
  53. Glibert PM, Burford MA (2017) Globally changing nutrient loads and harmful algal blooms: recent advances, new paradigms, and continuing challenges. Oceanography 30(1):58–69. Scholar
  54. Glibert PM, Burkholder JM (2006) The complex relationships between increasing fertilization of the earth, coastal eutrophication and proliferation of harmful algal blooms. In: Granéli E, Turner J (eds) Ecology of harmful algae. Springer, New York, NY, pp 341–354CrossRefGoogle Scholar
  55. Glibert PM, Burkholder JM (2011) Eutrophication and HABs: strategies for nutrient uptake and growth outside the Redfield comfort zone. Chin J Oceanol Limnol 29:724–738CrossRefGoogle Scholar
  56. Glibert PM, Burkholder JM (2017) Causes of harmful algal blooms. In: Shumway S, Burkholder JM, Morton SL (eds) Harmful algal blooms: a compendium desk reference. Wiley (in press)Google Scholar
  57. Glibert PM, Burkholder JM, Granéli E et al (2008a) Advances and insights in the complex relationships between eutrophication and HABs: preface to the special issue. Harmful Algae 8:1–2CrossRefGoogle Scholar
  58. Glibert PM, Burkholder JM, Kana TM et al (2009a) Grazing by Karenia brevis on Synechococcus enhances their growth rate and may help to sustain blooms. Aquat Microb Ecol 55:17–30CrossRefGoogle Scholar
  59. Glibert PM, Burkholder JM, Kana TM (2012) Recent advances in understanding of relationships between nutrient availability, forms and stoichiometry and the biogeographical distribution, ecophysiology, and food web effects of pelagic and benthic Prorocentrum spp. Harmful Algae 14:231–259CrossRefGoogle Scholar
  60. Glibert PM, Fullerton D, Burkholder JM et al (2011) Ecological stoichiometry, biogeochemical cycling, invasive species and aquatic food webs: San Francisco Estuary and comparative systems. Rev Fish Sci 19:358–417CrossRefGoogle Scholar
  61. Glibert PM, Harrison JA, Heil CA et al (2006) Escalating worldwide use of urea – a global change contributing to coastal eutrophication. Biogeochemistry 77:441–463CrossRefGoogle Scholar
  62. Glibert PM, Heil CA, Hollander D et al (2004) Evidence for dissolved organic nitrogen and phosphorus uptake during a cyanobacterial bloom in Florida Bay. Mar Ecol Prog Ser 280:73–83CrossRefGoogle Scholar
  63. Glibert PM, Heil CA, Rudnick D et al (2009b) Florida Bay: status, trends, new blooms, recurrent problems. Contrib Mar Sci 38:5–17Google Scholar
  64. Glibert PM, Kana TM, Brown K (2013) From limitation to excess: consequences of substrate excess and stoichiometry for phytoplankton physiology, trophodynamics and biogeochemistry, and implications for modelling. J Mar Syst 125:14–28. Scholar
  65. Glibert PM, Maranger R, Sobota DJ et al (2014a) The Haber-Bosch–harmful algal bloom (HB-HAB) link. Environ Res Lett 9:105001 (13 p). Scholar
  66. Glibert PM, Mayorga E, Seitzinger S (2008b) Prorocentrum minimum tracks anthropogenic nitrogen and phosphorus inputs on a global basis: application of spatially explicit nutrient export models. Harmful Algae 8:33–38CrossRefGoogle Scholar
  67. Glibert PM, Seitzinger S, Heil CA et al (2005) The role of eutrophication in the global proliferation of harmful algal blooms: new perspectives and new approaches. Oceanography 18(2):198–209CrossRefGoogle Scholar
  68. Glibert PM, Wilkerson FP, Dugdale RC et al (2016) Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions. Limnol Oceanogr 61:165–197CrossRefGoogle Scholar
  69. Gobler CJ, Burkholder JM, Davis TW et al (2016) The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae 54:87–97PubMedPubMedCentralCrossRefGoogle Scholar
  70. Goolsby DA, Battaglin WA (2001) Long-term changes in concentrations and flux of nitrogen in the Mississippi River basin, USA. Hydrol Process 15:1209–1226CrossRefGoogle Scholar
  71. Granéli E, Edler L, Gedziorowska D et al (1985) Influence of humic and fulvic acids on Prorocentrum minimum (Pav.) Schiller. In: Anderson DM, White AW, Baden DG (eds) Toxic dino flagellates. Elsevier, New York, NY, pp 201–206Google Scholar
  72. Granéli E, Flynn K (2006) Chemical and physical factors influencing toxin content. In: Granéli E, Turner J (eds) The ecology of harmful algae. Springer, New York, NY, pp 229–241CrossRefGoogle Scholar
  73. Granéli E, Johansson N (2003) Increase in the production of allelopathic substances by Prymnesium parvum cells grown under N- or P-deficient conditions. Harmful Algae 2:135–145CrossRefGoogle Scholar
  74. Granéli E, Olsson P, Sundstrøm B et al (1989) In situ studies of the effects of humic acids on dinoflagellates and diatoms. In: Okaichi T, Anderson DM, Nomoto T (eds) Red tides: biology, environmental science and toxicology. Elsevier, New York, NY, pp 209–212Google Scholar
  75. Hajdu S, Pertola S, Kuosa H (2005) Prorocentrum minimum (Dinophyceae) in the Baltic Sea: morphology, occurrence – a review. Harmful Algae 4:471–480CrossRefGoogle Scholar
  76. Hansen PJ (2011) The role of photosynthesis and food uptake for the growth of marine mixotrophic dinoflagellates. J Eukaryot Microbiol 58:203–214PubMedPubMedCentralCrossRefGoogle Scholar
  77. Hardison DR, Sunda WG, Litaker RW et al (2012) Nitrogen limitation increases brevetoxins in Karenia brevis (Dinophyceae): implications for bloom toxicity. J Phycol 48:844–858CrossRefGoogle Scholar
  78. Hardison DR, Sunda WG, Shea D et al (2013) Increased toxicity of Karenia brevis during phosphate limited growth: ecological and evolutionary implications. PLoS One 8(3):e58545. Scholar
  79. Harris GP (1986) Phytoplankton ecology: structure, function and fluctuation. Chapman and Hall, LondonCrossRefGoogle Scholar
  80. Harris TD, Smith VH, Graham JL et al (2016) Combined effects of nitrogen to phosphorus and nitrate to ammonia ratios on cyanobacterial metabolite concentrations in eutrophic Midwestern USA reservoirs. Inland Wat 6:199–210CrossRefGoogle Scholar
  81. Harrison JA, Caraco NF, Seitzinger SP (2005a) Global patterns and sources of dissolved organic matter export to the coastal zone: results from a spatially explicit, global model. Global Biogeochem Cycles 19:GB4S04Google Scholar
  82. Harrison JA, Seitzinger SP, Caraco N et al (2005b) Dissolved inorganic phosphorous export to the coastal zone: results from a new, spatially explicit, global model (NEWS-SRP). Global Biogeochem Cycles 19:GB4S03Google Scholar
  83. Heil CA, Glibert PM, Fan C (2005) Prorocentrum minimum (Pavillard) Schiller – a review of a harmful algal bloom species of growing worldwide importance. Harmful Algae 4:449–470CrossRefGoogle Scholar
  84. Heisler J, Glibert PM, Burkholder JM et al (2008) Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8:3–13PubMedPubMedCentralCrossRefGoogle Scholar
  85. Hitchcock G, Phlips E, Brand L et al (2007) Plankton blooms. In: Hunt JH, Nuttle W (eds) Florida Bay science program: a synthesis of research on Florida Bay. Fish and Wildlife Research Institute Technical Report TR-11. Florida Fish and Wildlife Research Institute, St Petersburg, FL, pp 77–91Google Scholar
  86. Holland E, Dentener F, Braswell B et al (1999) Contemporary and preindustrial global reactive nitrogen budgets. Biogeochemistry 4:7–43Google Scholar
  87. Honkanen T, Helminen H (2000) Impacts of fish farming on eutrophication: comparisons among different characteristics of ecosystem. Int Rev Hydrobiol 85:673–686CrossRefGoogle Scholar
  88. Howarth RW (2008) Coastal nitrogen pollution: a review of sources and trends globally and regionally. Harmful Algae 8:14–20CrossRefGoogle Scholar
  89. Howarth RW, Billen G, Swaney D et al (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: natural and human in influences. Biogeochemistry 35:75–139CrossRefGoogle Scholar
  90. Howarth RW, Sharpley A, Walker D (2002) Sources of nutrient pollution to coastal waters in the United States: implications for achieving coastal water quality goals. Estuaries 25:656–676CrossRefGoogle Scholar
  91. Hu C, Li D, Chen C et al (2010) On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea. Marine Science Faculty Publications Paper 58.
  92. Intergovernmental Panel on Climate Change (IPCC) Core Writing Team (2007) Climate change 2007: synthesis report. In: Pachauri RK, Reisinger A (eds) Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, p 104Google Scholar
  93. Intergovernmental Panel on Climate Change (IPCC) core Writing Team (2014) Climate change 2014: synthesis report. In: Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, GenevaGoogle Scholar
  94. Jeong HJ, Park JY, Nho JH et al (2005) Feeding by red-tide dinoflagellates on the cyanobacterium Synechococcus. Aquat Microb Ecol 41:131–143CrossRefGoogle Scholar
  95. Jeong HJ, Yoo YD, Kim TH et al (2004) Mixotrophy in the phototrophic harmful alga Cochlodinium polykrikoides (Dinophyceae): prey species, the effects of prey concentration and grazing impact. J Eukaryot Microbiol 51:563–569PubMedPubMedCentralCrossRefGoogle Scholar
  96. Jeong HJ, Yoo YD, Kim JS et al (2010) Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci J 45:65–91CrossRefGoogle Scholar
  97. Johansson N, Granéli E (1999) Influence of different nutrient conditions on cell density, chemical composition and toxicity of Prymnesium parvum (Haptophyta) in semi-continuous cultures. J Exp Mar Biol Ecol 239:243–258CrossRefGoogle Scholar
  98. Kaushik SJ, Cowey CB (1991) Dietary factors affecting nitrogen excretion by fish. In: Cowey CB, Cho CY (eds) Nutritional strategies and aquaculture waste. Proceedings of the 1st International symposium on nutritional strategies in management of aquaculture waste. University of Guelph, Ontario, Canada, pp 3–19Google Scholar
  99. Kimmerer WJ (2002) Physical, biological and management responses to variable freshwater flow into the San Francisco Estuary. Estuaries 25:1275–1290CrossRefGoogle Scholar
  100. Kremp A, Godhe A, Egardt J et al (2012) Strain variability in the response of bloom-forming marine microalgae to changed climate conditions. Ecol Evol 2:1195–1207PubMedPubMedCentralCrossRefGoogle Scholar
  101. Kudela RM, Gobler CJ (2012) Harmful dinoflagellate blooms caused by Cochlodinium sp.: global expansion and ecological strategies facilitating bloom formation. Harmful Algae 14:71–86CrossRefGoogle Scholar
  102. Kudela RM, Lane JQ, Cochlan WP (2008a) The potential role of anthropogenically derived nitrogen in the growth of harmful algae in California, USA. Harmful Algae 8:103–110CrossRefGoogle Scholar
  103. Kudela RM, Ryan JP, Blakeley MD et al (2008b) Linking the physiology and ecology of Cochlodinium to better understand harmful algal bloom events: a comparative approach. Harmful Algae 7:278–292CrossRefGoogle Scholar
  104. Larsen J, Eikrem W, Paasche E (1993) Growth and toxicity in Prymnesium patelliferum (Prymnesiophycae) isolated from Norwegian waters. Can J Bot 71:1357–1362CrossRefGoogle Scholar
  105. Larsen J, Sournia A (1991) Diversity of heterotrophic dinoflagellates. In: Patterson DJ, Larsen J (eds) The biology of free-living heterotrophic dinoflagellates. Clarendon Press, Oxford, pp 313–332Google Scholar
  106. Laruelle GG (2009) Quantifying nutrient cycling and retention in coastal waster at the global scale. PhD dissertation, Geologica Ultraiectina. Mededelingen van de Faculteit Geowetenschappen Universiteit Utrecht No. 312, Utrecht University, Utrecht, p 226Google Scholar
  107. Lee MO, Kim JK (2008) Characteristics of algal blooms in the southern coastal waters of Korea. Mar Environ Res 65:128–147PubMedCrossRefGoogle Scholar
  108. Lehman PW, Boyer G, Hall C et al (2005) Distribution and toxicity of a new colonial Microcystis aeruginosa bloom in the San Francisco Bay Estuary, California. Hydrobiologia 541:87–99CrossRefGoogle Scholar
  109. Lehman PW, Boyer G, Stachwell M et al (2008) The influence of environmental conditions on seasonal variation of Microcystis abundance and microcystins concentration in San Francisco Estuary. Hydrobiologia 600:187–204CrossRefGoogle Scholar
  110. Lehner B, Liermann CR, Revenga C et al (2011) High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front Ecol Environ 9:494–502CrossRefGoogle Scholar
  111. Lewis NI, Bates SS, McLachlan JL et al (1993) Temperature effects on growth, domoic acid production, and morphology of the diatom Nitzschia-pungens f. multiseries. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier Science Publications B V, Amsterdam, pp 601–606Google Scholar
  112. Li J, Glibert PM, Zhou M et al (2009) Relationships between nitrogen and phosphorus forms and ratios and the development of dinoflagellate blooms in the East China Sea. Mar Ecol Prog Ser 383:11–26CrossRefGoogle Scholar
  113. Li J, Glibert PM, Zhou M (2010) Temporal and spatial variability in nitrogen uptake kinetics during harmful dinoflagellate blooms in the East China Sea. Harmful Algae 9:531–539CrossRefGoogle Scholar
  114. Liermann CR, Nilsson C, Robertson J et al (2012) Implications of dam obstruction for global freshwater fish diversity. Biosciences 62:539–548CrossRefGoogle Scholar
  115. Lin C-H, Accoroni S, Glibert PM (2017) Mixotrophy in the dinoflagellate Karlodinium veneficum under variable nitrogen:phosphorus stoichiometry: feeding response and effects on larvae of the eastern oyster (Crassostrea virginica). Aquat Microb Ecol 79:101–114. Scholar
  116. Liu D, Zhou MJ (2018) Green tides of the Yellow Sea: massive free-floating blooms of Ulva prolifera. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 317–326CrossRefGoogle Scholar
  117. Lomas MW, Glibert PM (1999) Temperature regulation of nitrate uptake: a novel hypothesis about nitrate uptake and reduction in cool-water diatoms. Limnol Oceanogr 44:556–572CrossRefGoogle Scholar
  118. Lu D, Goebel J (2001) Five red tide species in genus Prorocentrum including the description of Prorocentrum donghaiense Lu sp. nov. from the East China Sea. China Chin J Oceanol Limnol 19:337–344CrossRefGoogle Scholar
  119. Lu D, Goebel J, Qi Y et al (2005) Morphology and genetic study of Prorocentrum donghaiense Lu from the East China Sea, and comparison with some related Prorocentrum species. Harmful Algae 4:493–506CrossRefGoogle Scholar
  120. Lu D, Wang H, Huang H et al (2011) Morphological and genetic comparison of two strains of a Prorocentrum species isolated from Zhejiang coastal water of China and Masan Bay of Korea. Chin J Oceanol Limnol 29:832–839CrossRefGoogle Scholar
  121. Lundgren V, Glibert PM, Granéli E et al (2016) Metabolic and physiological changes in Prymnesium parvum when grown under, and grazing on, prey of variable nitrogen:phosphorus stoichiometry. Harmful Algae 55:1–12PubMedPubMedCentralCrossRefGoogle Scholar
  122. Madden CJ, Smith R, Dettmann E et al (2010) Estuarine typology development and application. In: Glibert P, Madden C, Boynton W et al (eds) Estuarine nutrient criteria development: state of the science. EPA Office of Water.
  123. Malone TC, Conley DJ, Glibert PM et al (1996) Scales of nutrient limited phytoplankton productivity: the Chesapeake Bay example. Estuaries 19:371–385CrossRefGoogle Scholar
  124. Marasović I, Pucher-Petkovic T, Petrova-Karadjova V (1990) Prorocentrum minimum (Dinophyceae) in the Adriatic and Black Sea. J Mar Biol Assoc UK 70:473–476CrossRefGoogle Scholar
  125. Martinez-Lopez A, Escobedo-Urias DC, Ulloa-Perez AE et al (2008) Dynamics of a Prorocentrum minimum bloom along the northern coast of Sinaloa, Mexico. Cont Shelf Res 28:1693–1701CrossRefGoogle Scholar
  126. Matsuoka K, Takano Y, Kamrani E et al (2010) Study on Cochlodinium polykrikoides Margalef in the Oman Sea and the Persian Gulf from August 2008 to August 2009. Curr Dev Oceanogr 1:153–171Google Scholar
  127. Mayorga E, Seitzinger SP, Harrison JA et al (2010) Global nutrient export from WaterSheds 2 (NEWS 2): model development and implementation. Environ Model Softw 25(7):837–853CrossRefGoogle Scholar
  128. McCabe RM, Hickey BM, Kudela RM et al (2016) An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys Res Lett.
  129. Miller, WD, Harding LW, Adolf JE (2005) The influence of Hurricane Isabel on Chesapeake Bay phytoplankton dynamics. In: Sellner KG (ed) Hurricane Isabel in perspective, Chesapeake Research Consortium Publication 05-160, Edgewater, Maryland, pp 155–160Google Scholar
  130. Miller WD, Harding LW, Adolf JE (2006) Hurricane Isabel generated an unusual fall bloom in Chesapeake Bay. Geophys Res Lett 33:LO6612. Scholar
  131. Minnhagen S, Kim M, Salomon P et al (2011) Active uptake of kleptoplastids by Dinophysis caudata from its ciliate prey Myrionecta rubra. Aquat Microb Ecol 62:99–108CrossRefGoogle Scholar
  132. Monchamp ME, Pick FR, Beisner BE et al (2014) Variation in microcystin concentration and composition in relation to cyanobacterial community structure. PLoS One 9(1):e85573. Scholar
  133. Moncheva D, Petrova Kardjova V, Palasov A (1995) Harmful algal blooms along the Bulgarian sea coast and possible patterns of fish and zoobenthos mortalities. In: Lassus P, Arzul G, Erard-Le Denn E et al (eds) Harmful marine algal blooms. Lavoisier, Paris, pp 193–198Google Scholar
  134. Moore SK, Trainer VL, Mantua NJ et al (2008) Impacts of climate variability and future change on harmful algal blooms and human health. Environ Health 7:S4. Scholar
  135. Mulholland MR, Morse RE, Boneillo GE et al (2009) Understanding causes and impacts of the dinoflagellate, Cochlodinium polykrikoides, blooms in the Chesapeake Bay. Estuaries 32:734–747CrossRefGoogle Scholar
  136. O’Neil JM, Davis TW, Burford MA et al (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334CrossRefGoogle Scholar
  137. Ogata T, Kodama M, Ishimaru T (1989) Effect of water temperature and light intensity on growth rate and toxin production of toxic dinoflagellates. In: Okaichi T, Anderson DM, Nemoto T (eds) Red tides, biology, environmental science and toxicology. Elsevier, New York, NY, pp 423–426Google Scholar
  138. Olenina I, Wasmund N, Hajdu S et al (2010) Assessing impacts of invasive phytoplankton: the Baltic Sea case. Mar Pollut Bull 60:1691–1700PubMedCrossRefGoogle Scholar
  139. Paerl HW, Huisman J (2008) Blooms like it hot. Science 3320:57–58CrossRefGoogle Scholar
  140. Paerl HW, Scott JT (2010) Throwing fuel on the fire: synergistic effects of excessive nitrogen inputs and global warming on harmful algal blooms. Environ Sci Technol 44:7756–7758PubMedCrossRefGoogle Scholar
  141. Pan YL, Subba Rao DV, Mann KH (1996) Changes in domoic acid production and cellular chemical composition of the toxigenic diatom Pseudo-nitzschia multiseries under phosphate limitation. J Phycol 32:371–381CrossRefGoogle Scholar
  142. Pennock JR (1985) Chlorophyll distributions in the Delaware Estuary: regulation by light limitation. Estuar Coast Shelf Sci 21:711–725CrossRefGoogle Scholar
  143. Peñuelas J, Sardans J, Rivas-Ubach A et al (2012) The human-induced imbalance between C, N and P in Earth’s life system. Glob Chang Biol 18:3–6CrossRefGoogle Scholar
  144. Pertola S, Kuosa H, Olsonen R (2005) Is the invasion of Prorocentrum minimum (Dinophyceae) related to the nitrogen enrichment of the Baltic Sea? Harmful Algae 4:481–492CrossRefGoogle Scholar
  145. Raven JA, Beardall J, Flynn KJ et al (2009) Phagotrophy in the origins of photosynthesis in eukaryotes and as a complementary mode of nutrition in phototrophs: relation to Darwin’s insectivorous plants. J Exp Bot 60:3975–3987. Scholar
  146. Redfield AC (1934) On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In: James Johnstone memorial volume. University of Liverpool Press, Liverpool, pp 176–192Google Scholar
  147. Richlen ML, Morton SL, Jamali EA et al (2010) The catastrophic 2008-2009 red tide in the Arabian Gulf region, with observations on the identification and phylogeny of the fish-killing dinoflagellate Cochlodinium polykrikoides. Harmful Algae 9:163–172CrossRefGoogle Scholar
  148. Seitzinger SP, Harrison JA, Dumont E et al (2005) Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: an overview of global nutrient export from Watersheds (NEWS) models and their application. Global Biogeochem Cycles 19:GB4S01. Scholar
  149. Seitzinger SP, Kroeze C, Bouwman AF et al (2002) Global patterns of dissolved in organic and particulate nitrogen inputs to coastal systems: recent conditions and future projections. Estuaries 25:640–655CrossRefGoogle Scholar
  150. Seitzinger SP, Mayorga E, Bouwman AF et al (2010) Global river nutrient export: a scenario analysis of past and future trends. Global Biogeochem Cycles 24:GB0A08. Scholar
  151. Shackeroff JM, Hazen EL, Crowder LB (2009) The oceans as peopled seascapes. In: McLeod K, Leslie H (eds) Ecosystem based management for the oceans. Island Press, Washington, DC, pp 33–54Google Scholar
  152. Shangguan Y, Glibert PM, Alexander JA et al (2017) Nutrients and phytoplankton community composition in semi-enclosed lagoon systems in Florida Bay and their responses to changes in flow from Everglades restoration. Limnol Oceanogr 62:S327–S347.
  153. Sierra-Beltran AP, Cortes-Altamirano R, Cortes-Lara MC (2005) Occurrences of Prorocentrum minimum (Pavillard) in Mexico. Harmful Algae 4:507–518CrossRefGoogle Scholar
  154. Silva ES (1985) Ecological factors related to Prorocentrum minimum blooms in Obidos Lagoon (Portugal). In: Anderson DM, White A, Baden D (eds) Toxic dinoflagellates. Elsevier, New York, NY, pp 251–256Google Scholar
  155. Smil V (2001) Enriching the Earth: Fritz Haber, Carl Bosch, and the transformation of world food. The MIT Press, CambridgeGoogle Scholar
  156. Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton, NJ, p 439Google Scholar
  157. Stonik IV (1995) A potentially toxic dinoflagellate, Prorocentrum minimum, in Amurskii Bay of the Sea of Japan. Russ J Mar Biol Assoc UK 20:314–320Google Scholar
  158. Stukel MR, Landry MR, Selph KE (2011) Nanoplankton mixotrophy in the eastern equatorial Pacific. Deep Sea Res Part II 58:378–386CrossRefGoogle Scholar
  159. Sun J, Hutchins DA, Feng YY et al (2011) Effects of changing pCO2 and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom Pseudo-nitzschia multiseries. Limnol Oceanogr 56:829–840CrossRefGoogle Scholar
  160. Sunda WG, Granéli E, Gobler CJ (2006) Positive feedback and the development and persistence of ecosystem disruptive algal blooms. J Phycol 42:963–974CrossRefGoogle Scholar
  161. Sutton MA, Bleeker A, Howard CM et al (2013) Our nutrient world: the challenge to produce more food and energy with less pollution. Centre for Ecology and Hydrology, EdinburghGoogle Scholar
  162. Swaney DP, Hong B, Paneer Selvam A et al (2014) Net anthropogenic nitrogen inputs and nitrogen fluxes from Indian watersheds: an initial assessment. J Mar Syst.
  163. Tang TY, Tai JH, Yang YJ (2000) The flow pattern north of Taiwan and the migration of the Kuroshio. Cont Shelf Res 20:349–371CrossRefGoogle Scholar
  164. Tango PJ, Magnien R, Butler W et al (2005) Impacts and potential effects due to Prorocentrum minimum blooms in Chesapeake Bay. Harmful Algae 4:525–531CrossRefGoogle Scholar
  165. Tatters AO, Fu F-X, Hutchins (2012) High CO2 and silicate limitation synergistically increase the toxicity of Pseudo-nitzschia fraudulenta. PLoS One 7(2):e32116. Scholar
  166. Ti C, Yan X (2013) Spatial and temporal variations of river nitrogen exports from major basins in China. Environ Sci Pollut Res 20:6509–6520CrossRefGoogle Scholar
  167. Unrein F, Massana R, Alonso-Saez L et al (2007) Significant year-round effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal system. Limnol Oceanogr 52:456–469CrossRefGoogle Scholar
  168. Van de Waal DB, Ferreruela G, Tonk L et al (2010) Pulsed nitrogen supply induces dynamic changes in the amino acid composition and microcystin production of the harmful cyanobacterium Planktothrix agardhii. FEMS Microbiol Ecol 74:430–438PubMedCrossRefGoogle Scholar
  169. Van de Waal DB, Verspagen JM, Finke JF et al (2011) Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2. ISME J 5:1438–1450PubMedPubMedCentralCrossRefGoogle Scholar
  170. Van de Waal DB, Verspagen JMH, Lürling M et al (2009) The ecological stoichiometry of toxins produced by harmful cyanobacteria: an experimental test of the carbon-nutrient balance hypothesis. Ecol Lett 12:1326–1335PubMedPubMedCentralCrossRefGoogle Scholar
  171. Visser PM, Verspagen JMH, Sandrini G et al (2016) How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 54:145–159PubMedPubMedCentralCrossRefGoogle Scholar
  172. Vörösmarty CJ, McIntyre PB, Gessner MO et al (2010) Global threats to human water security and river biodiversity. Nature 467:555–561PubMedPubMedCentralCrossRefGoogle Scholar
  173. Walsby T (1975) Gas vesicles. Annu Rev Plant Physiol 26:427–439CrossRefGoogle Scholar
  174. Wazniak CE, Glibert PM (2004) Potential impacts of brown tide, Aureococcus anophagefferens, on juvenile hard clams, Mercenaria mercenaria, in the Coastal Bays of Maryland, USA. Harmful Algae 3:321–329CrossRefGoogle Scholar
  175. Wells ML, Karlson B (2018) Harmful algal blooms in a changing ocean. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 77–90CrossRefGoogle Scholar
  176. Wells ML, Trainer VL, Smayda TJ et al (2015) Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae 49:68–93PubMedPubMedCentralCrossRefGoogle Scholar
  177. Wu RSS, Lam KS, Mackay DW et al (1994) Impact of marine fish farming on water quality and bottom sediment: a case study in the sub-tropical environment. Mar Environ Res 38:115–145CrossRefGoogle Scholar
  178. Yu R-C, Lü S-H, Liang Y-B (2018) Harmful algal blooms in the coastal waters of China. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 309–316CrossRefGoogle Scholar
  179. Zarfl C, Lumsdon AE, Berlekamp J et al (2015) A global boom in hydropower dam construction. Aquat Sci 77:161–170CrossRefGoogle Scholar
  180. Zhang QC, Qiu LM, Yu RC et al (2012) Emergence of brown tides caused by Aureococcus anophagefferens Hargraves et Sieburth in China. Harmful Algae 19:117–124CrossRefGoogle Scholar
  181. Zhang J, Wu Y, Zhang YY (2015) Plant nutrients and trace elements from the Changjiang watersheds and East China Sea Shelf. In: Zhang J (ed) Ecological continuum from the Changjiang (Yangtze River) watersheds to the East China Sea continental margin. Springer International Publishing, Switzerland, pp 93–118Google Scholar
  182. Zhou M, Yan T, Zou J (2003) Preliminary analysis of the characteristics of red tide areas in Changjiang River estuary and its adjacent sea. Chin J Appl Ecol 14:1031–1038Google Scholar
  183. Zhou MJ, Shen ZL, RC Y (2008) Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River. Cont Shelf Res 28:1483–1489CrossRefGoogle Scholar
  184. Zhu Z-Y, Zhang J, Wu Y et al (2011) Hypoxia off the Changjiang (Yangtze River) estuary: oxygen depletion and organic matter decomposition. Mar Chem 125:108–116CrossRefGoogle Scholar
  185. Zubkov MV, Tarran GA (2008) High bacterivory by the smallest phytoplankton in the North Atlantic Ocean. Nature 455:224–226PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Patricia M. Glibert
    • 1
    Email author
  • Adnan Al-Azri
    • 2
  • J. Icarus Allen
    • 3
  • Alexander F. Bouwman
    • 4
    • 5
  • Arthur H. W. Beusen
    • 4
    • 5
  • Michele A. Burford
    • 6
  • Paul J. Harrison
    • 7
  • Mingjiang Zhou
    • 8
  1. 1.University of Maryland Center for Environmental Science, Horn Point LaboratoryCambridgeUSA
  2. 2.College of Agricultural and Marine SciencesSultan Qaboos UniversityMuscatSultanate of Oman
  3. 3.Plymouth Marine LaboratoryPlymouthUK
  4. 4.Faculty of Geosciences, Department of Earth Sciences—GeochemistryUtrecht UniversityUtrechtThe Netherlands
  5. 5.PBL Netherlands Environmental Assessment AgencyBilthovenThe Netherlands
  6. 6.Australian Rivers Institute and School of EnvironmentGriffith UniversityNathanAustralia
  7. 7.Department of Earth and Ocean SciencesUniversity of British ColumbiaVancouverCanada
  8. 8.Institute of Oceanology, Chinese Academy of SciencesQingdaoChina

Personalised recommendations