Skip to main content

Key Questions and Recent Research Advances on Harmful Algal Blooms in Eastern Boundary Upwelling Systems

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 232))

Abstract

The Core Research Project (CRP) HABs in Upwelling Systems was developed as part of the implementation of the international science programme the Global Ecology and Oceanography of Harmful Algal Blooms (GEOHAB). Progress in addressing eight key questions identified as a requirement for advancing our understanding of the ecology and oceanography of HABs in upwelling systems is reviewed. The considerable diversity of HAB species found in upwelling systems is considered to reflect the mosaic of multiple and shifting sub-habitats present within upwelling systems. In developing predictive capabilities, the need to consider species-specific behaviour with reference to the environmental and ecological parameters that characterize these sub-habitats is demonstrated. However, the limited spatial resolution of many numerical models has prevented incorporation of the complexity created at the small scale by physically driven niche diversification. Observations of opportunistic exploitation of multiple seeding options rather than depending on a single seeding mode further complicate prediction. Although contrasting nutrient strategies have been demonstrated for HABs in upwelling systems, attempts to determine species-specific nutrient requirements are few. The timing of HABs is controlled by wind stress fluctuations and buoyancy inputs at the seasonal, event and interannual scales, whereas the spatial distribution of HABs is controlled by mesoscale features that interrupt typical upwelling circulation patterns leading to the identification of HAB hotspots. Here cross-shelf and alongshore currents are important in the transport, accumulation and dispersion of HAB populations. With increasing availability of long-term data sets, changing trends in HABs related to climate are emerging. Owing to the strong physical control of HABs in upwelling systems, successful prediction as a possible outcome of the integration of real-time data into model systems as a component of operational forecasting of the ocean is most likely to be achieved, thus taking a critical step towards fulfilment of GEOHAB goals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Álvarez-Salgado XA, Figueiras FG, Fernández-Reiriz MJ et al (2011) Control of lipophilic shellfish poisoning outbreaks by seasonal upwelling and continental runoff. Harmful Algae 10:121–129

    Article  Google Scholar 

  • Álvarez-Salgado XA, Labarta U, Fernández-Reiriz MJ et al (2008) Renewal time and the impact of harmful algal blooms on the extensive mussel raft culture of the Iberian coastal upwelling system (SW Europe). Harmful Algae 7:849–855

    Article  Google Scholar 

  • Amorim A, Nolasco R, Oliveira PB et al (2014) Seeding of Gymnodinium catenatum blooms in Iberian shelf waters. ICES CM 2014/H: 20

    Google Scholar 

  • Anderson CR, Kudela RM, Benitez-Nelson C et al (2011) Detecting toxic diatom blooms from ocean colour and a regional ocean model. Geophys Res Lett 38:L04603. https://doi.org/10.1029/2010GL045858

    Article  CAS  Google Scholar 

  • Anderson CR, Siegel DA, Kudela RM et al (2009) Empirical models of toxigenic Pseudo-nitzschia blooms: potential use as a remote detection tool in the Santa Barbara Channel. Harmful Algae 8:478–492

    Article  CAS  Google Scholar 

  • Barron JA, Bukry D, Field DB et al (2013) Response of diatoms and silicoflagellates to climate change and warming in the California current during the past 250 years and the recent rise of the toxic diatom Pseudo-nitzschia australis. Quat Int 310:140–154

    Article  Google Scholar 

  • Barton ED, Torres R, Figueiras FG et al (2016) Surface water subduction during a downwelling event in a semienclosed bay. J Geophys Res Oceans 121:7088–7107

    Article  Google Scholar 

  • Bravo I, Fraga S, Isabel Figueroa R et al (2010) Bloom dynamics and life cycle strategies of two toxic dinoflagellates in a coastal upwelling system (NW Iberian Peninsula). Deep Sea Res II 57:222–234

    Article  CAS  Google Scholar 

  • Díaz PA, Reguera B, Ruiz-Villarreal M et al (2013) Climate variability and oceanographic settings associated with interannual variability in the initiation of Dinophysis acuminata blooms. Mar Drugs 11:2964–2981

    Article  PubMed  PubMed Central  Google Scholar 

  • Díaz PA, Ruiz-Villarreal M, Velo-Suárez L et al (2014) Tidal and wind-event variability and the distribution of two groups of Pseudo-nitzschia species in an upwelling-influenced Ría. Deep Sea Res II 101:163–179

    Article  Google Scholar 

  • Díaz PA, Ruiz-Villarreal M, Pazos Y et al (2016) Climate variability and Dinophysis acuta blooms in an upwelling system. Harmful Algae 53:145–159

    Article  PubMed  Google Scholar 

  • Escalera L, Reguera B, Moita T et al (2010) Bloom dynamics of Dinophysis acuta in an upwelling system: in situ growth versus transport. Harmful Algae 9:312–322

    Article  Google Scholar 

  • Franks PJS (2018) Recent advances in modelling of harmful algal blooms. In: Glibert PM, Berdalet E, Burford MA et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 359–377

    Google Scholar 

  • Frolov S, Kudela RM, Bellingham JG (2013) Monitoring harmful algal blooms in the era of diminishing resources: a case study of the U.S. West Coast. Harmful Algae 21–22:1–12

    Article  Google Scholar 

  • GEOHAB (2001) Global ecology and oceanography of harmful algal blooms, science plan. Glibert P, Pitcher G (eds) SCOR and IOC, Baltimore and Paris, 86 pp

    Google Scholar 

  • GEOHAB (2003) Global ecology and oceanography of harmful algal blooms, implementation plan. Gentien P, Pitcher G, Cembella A et al (eds) SCOR and IOC, Baltimore and Paris, 36 pp

    Google Scholar 

  • GEOHAB (2005) Oceanography of harmful algal blooms, GEOHAB core research project: HABs in upwelling systems. Pitcher G, Moita T, Trainer V et al (eds) Global ecology and IOC and SCOR, Paris and Baltimore, 88 pp

    Google Scholar 

  • GEOHAB (2011) GEOHAB modelling: linking observations to predictions, a workshop report. McGillicuddy DJ Jr, Glibert PM, Berdalet E et al (eds) IOC and SCOR, Paris and Newark, Delaware, 85 pp

    Google Scholar 

  • Giddings SN, MacCready P, Hickey BM et al (2014) Hindcasts of potential harmful algal bloom transport pathways on the Pacific Northwest coast. J Geophys Res Oceans 119:2439–2461

    Article  Google Scholar 

  • Glibert PM (2016) Margalef revisited: a new phytoplankton mandala incorporating twelve dimensions, including nutritional physiology. Harmful Algae 55:25–30

    Article  PubMed  Google Scholar 

  • Glibert PM, Heil CA, Wilkerson F et al (2018) Nutrients and HABs: dynamic kinetics and flexible nutrition. In: Glibert PM, Berdalet E, Burford MA et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp. 93–112

    Google Scholar 

  • Hickey BM, Trainer VL, Kosro PM et al (2013) A springtime source of toxic Pseudo-nitzschia cells on razor clam beaches in the Pacific Northwest. Harmful Algae 25:1–14

    Article  Google Scholar 

  • Howard MDA, Smith GJ, Kudela RM (2009) Phylogenetic relationships of yessotoxin-producing dinoflagellates, based on the large subunit and internal transcribed spacer ribosomal DNA domains. Appl Environ Microbiol 75:54–63

    Article  CAS  PubMed  Google Scholar 

  • Howard MDA, Sutula M, Caron DA et al (2014) Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight. Limnol Oceanogr 59:285–297

    Article  Google Scholar 

  • Joyce LB, Pitcher GC (2006) Cysts of Alexandrium catenella on the west coast of South Africa: distribution and characteristics of germination. Afr J Mar Sci 28:295–298

    Article  Google Scholar 

  • Kahru M, Mitchell BG, Diaz A et al (2008) MODIS detects a devastating algal bloom in Paracas Bay, Peru. EOS 85:465–472

    Article  Google Scholar 

  • Kana TM, Glibert PM (2016) On saturating response curves from the dual perspectives of photosynthesis and nitrogen acquisition. In: Glibert PM, Kana TM (eds) Aquatic microbial ecology and biogeochemistry: a dual perspective. Springer, Geneva, pp 93–104

    Chapter  Google Scholar 

  • Kudela R, Pitcher G, Probyn T et al (2005) Harmful algal blooms in coastal upwelling systems. Oceanography 18:184–197

    Article  Google Scholar 

  • Kudela RM, Raine R, Pitcher G et al (2018) Establishment, goals, and the legacy of the global ecology and oceanography of harmful algal blooms (GEOHAB) Program. In: Glibert PM, Berdalet E, Burford MA et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 27–49

    Google Scholar 

  • Lane JQ, Raimondi PT, Kudela RM (2009) Development of a logistic regression model for the prediction of toxigenic Pseudo-nitzschia blooms in Monterey Bay, California. Mar Ecol Prog Ser 383:37–51

    Article  CAS  Google Scholar 

  • Lecher AL, Mackey K, Kudela R et al (2015) Nutrient loading through submarine groundwater discharge and phytoplankton growth in Monterey Bay, CA. Environ Sci Technol 49:6665–6673

    Article  CAS  PubMed  Google Scholar 

  • Lucas AJ, Pitcher GC, Probyn TA et al (2014) The influence of diurnal winds on phytoplankton dynamics in a coastal upwelling system off southwestern Africa. Deep Sea Res II 101:50–62

    Article  CAS  Google Scholar 

  • Lundholm N, Bates SS, Baugh KA et al (2012) Cryptic and pseudo-cryptic diversity in diatoms – with descriptions of Pseudo-nitzschia hasleana sp. nov. and P. fryxelliana sp. nov. J Phycol 48:436–454

    Article  PubMed  Google Scholar 

  • Margalef R (1978) Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta 1:493–509

    Google Scholar 

  • Mateus M, Silva A, de Pablo H et al (2013) Using Lagrangian elements to simulate alongshore transport of harmful algal blooms. In: Mateus M, Neves R (eds) Ocean modelling for coastal management – case studies MOHID. IST Press, Lisbon, pp 235–247

    Google Scholar 

  • McCabe RM, Hickey BM, Kudela RM et al (2016) An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys Res Lett 43:10366–10376

    Article  PubMed  PubMed Central  Google Scholar 

  • McKibben SM, Peterson W, Wood AM et al (2017) Climatic regulation of the neurotoxin domoic acid. Proc Natl Acad Sci USA 114:239–244

    Article  CAS  PubMed  Google Scholar 

  • Moita MT, Pazos Y, Rocha C et al (2016) Toward prediciting Dinophysis blooms off NW Iberia: a decade of events. Harmful Algae 53:17–32

    Article  PubMed  Google Scholar 

  • Moore SK, Johnstone JA, Banas NS et al (2015) Present-day and future climate pathways affecting Alexandrium blooms in Puget Sound, WA, USA. Harmful Algae 48:1–11

    Article  CAS  PubMed  Google Scholar 

  • Moore SK, Mantua NJ, Salathé EP (2011) Past trends and future scenarios for environmental conditions favoring the accumulation of paralytic shellfish toxins in Puget Sound shellfish. Harmful Algae 10:521–529

    Article  Google Scholar 

  • Moore SK, Mantua NJ, Trainer VL et al (2009) Recent trends in paralytic shellfish toxins in Puget Sound, relationships to climate, and capacity for prediction of toxic events. Harmful Algae 8:463–477

    Article  CAS  Google Scholar 

  • Oliveira PB, Nolasco R, Dubert J et al (2009) Surface temperature, chlorophyll and advection patterns during a summer upwelling event off central Portugal. Cont Shelf Res 29:759–774

    Article  Google Scholar 

  • Palma S, Mouriño H, Silva A et al (2010) Can Pseudo-nitzschia blooms be modeled by coastal upwelling in Lisbon Bay? Harmful Algae 9:294–303

    Article  Google Scholar 

  • Peacock MB, Kudela RM (2014) Evidence for active vertical migration by two dinoflagellates experiencing iron, nitrogen, and phosphorus limitation. Limnol Oceanogr 59:660–673

    Article  CAS  Google Scholar 

  • Pérez FF, Padín XA, Pazos Y et al (2010) Plankton response to weakening of the Iberian coastal upwelling. Glob Chang Biol 16:1258–1267

    Article  Google Scholar 

  • Pinto L, Mateus M, Sliva A (2016) Modeling the transport pathways of harmful algal blooms in the Iberian coast. Harmful Algae 53:8–16

    Article  CAS  PubMed  Google Scholar 

  • Pitcher GC (2012) Harmful algae – the requirement for species-specific information. Harmful Algae 14:1–4

    Article  Google Scholar 

  • Pitcher GC, Bernard S, Ntuli J (2008) Contrasting bays and red tides in the southern Benguela upwelling system. Oceanography 21:82–91

    Article  Google Scholar 

  • Pitcher GC, Figueiras FG, Hickey BM et al (2010) The physical oceanography of upwelling systems and the development of harmful algal blooms. Prog Oceanogr 85:5–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitcher GC, Joyce LB (2009) Dinoflagellate cyst production on the southern Namaqua shelf of the Benguela upwelling system. J Plankton Res 31:865–875

    Article  Google Scholar 

  • Pitcher GC, Neslon G (2006) Characteristics of the surface boundary layer important to the development of red tide on the southern Namaqua shelf of the Benguela upwelling system. Limnol Oceanogr 51:2660–2674

    Article  Google Scholar 

  • Raho N, Pizarro G, Escalera L et al (2008) Morphology, toxin composition and molecular analysis of Dinophysis ovum Schütt, a dinoflagellate of the “Dinophysis acuminata complex”. Harmful Algae 7:839–848

    Article  CAS  Google Scholar 

  • Reifel KM, Corcoran AA, Cash C et al (2013) Effects of a surfacing effluent plume on a coastal phytoplankton community. Cont Shelf Res 60:38–50

    Article  Google Scholar 

  • Rines JEB, McFarland MN, Donaghay PL et al (2010) Thin layers and species-specific characterization of the phytoplankton community in Monterey Bay, California, USA. Cont Shelf Res 30:66–80

    Article  Google Scholar 

  • Ruiz-Villarreal M, García-García LM, Cobas M et al (2016) Modelling the hydrodynamic conditions associated with Dinophysis blooms in Galicia. Harmful Algae 53:40–52

    Article  PubMed  Google Scholar 

  • Ryan JP, Gower JFR, King SA et al (2008) A coastal ocean extreme bloom incubator. Geophys Res Lett 35:L12602

    Article  Google Scholar 

  • Ryan JP, McManus MA, Sullivan JM (2010) Interacting physical, chemical and biological forcing of phytoplankton thin-layer variability in Monterey Bay, California. Cont Shelf Res 30:7–16

    Article  Google Scholar 

  • Seegers BN, Birch JM, Marin R III et al (2015) Subsurface seeding of surface harmful algal blooms observed through the integration of autonomous gliders, moored environmental sample processors, and satellite remote sensing in southern California. Limnol Oceanogr 60:754–764

    Article  Google Scholar 

  • Seeyave S, Probyn TA, Pitcher GC et al (2009) Nitrogen nutrition in assemblages dominated by Pseudo-nitzschia spp., Alexandrium catenella and Dinophysis acuminata off the west coast of South Africa. Mar Ecol Prog Ser 379:91–107

    Article  CAS  Google Scholar 

  • Sekula-Wood E, Benitez-Nelson C, Morton S et al (2011) Pseudo-nitzschia and domoic acid fluxes in Santa Barbara Basin (CA) from 1993 to 2008. Harmful Algae 10:567–575

    Article  Google Scholar 

  • Shanks AL, Morgon SG, MacMahan J et al (2016) Variation in the abundance of Pseudo-nitzschia and domoic acid with surf zone type. Harmful Algae 55:172–178

    Article  CAS  PubMed  Google Scholar 

  • Silva A, Pinto L, Rodrigues SM et al (2016) A HAB warning system for shelfish in Portugal. Harmful Algae 53:33–39

    Article  CAS  PubMed  Google Scholar 

  • Sison-Mangus MP, Jiang S, Tran KN et al (2014) Host-specific adaptation governs the interaction of the marine diatom, Pseudo-nitzschia and their microbiota. ISME J 8:63–76

    Article  CAS  PubMed  Google Scholar 

  • Smayda TJ (2002) Turbulence, watermass stratification and harmful algal blooms: an alternative view and frontal zones as “pelagic seed banks”. Harmful Algae 1:95–112

    Article  Google Scholar 

  • Smayda TJ (2010) Adaptations and selection of harmful and other dinoflagellate species in upwelling systems 1. Morphology and adaptive polymorphism. Prog Oceanogr 85:53–70

    Article  Google Scholar 

  • Smayda TJ, Reynolds CS (2001) Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. J Plankton Res 23:447–461

    Article  Google Scholar 

  • Smayda TJ, Trainer VL (2010) Dinoflagellate blooms in upwelling systems: seeding, variability, and contrasts with diatom bloom behaviour. Prog Oceanogr 85:92–107

    Article  Google Scholar 

  • Tatters AO, Flewelling LJ, Fu F et al (2013) High CO2 promotes the production of paralytic shellfish poisoning toxins by Alexandrium catenella from southern California waters. Harmful Algae 30:37–43

    Article  CAS  Google Scholar 

  • Tatters AO, Fu F, Hutchins DA (2012) High CO2 and silicate limitation synergistically increase the toxicity of Pseudo-nitzschia fraudulenta. PLoS One 7(2):e32116. https://doi.org/10.1371/journal.pone.0032116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trainer VL, Pitcher GC, Reguera B et al (2010) The distribution and impacts of harmful algal bloom species in eastern boundary upwelling systems. Prog Oceanogr 85:33–52

    Article  Google Scholar 

  • Velo-Suárez L, Fernand L, Gentien P et al (2010) Hydrodynamic conditions associated with the formation, maintenance and dissipation of a phytoplankton thin layer in a coastal upwelling system. Cont Shelf Res 30:193–202

    Article  Google Scholar 

  • Velo-Suárez L, González-Gil S, Pazos Y et al (2014) The growth season of Dinophysis acuminata in an upwelling system embayment: a conceptual model based on in situ measurements. Deep Sea Res II 101:141–151

    Article  Google Scholar 

  • Velo-Suárez L, Reguera B, Garcés E et al (2009) Vertical distribution of division rates in coastal dinoflagellate Dinophysis spp. populations: implications for modeling. Mar Ecol Prog Ser 385:87–96

    Article  Google Scholar 

  • Wells ML, Karlson B (2018) Harmful algal blooms in a changing ocean. In: Glibert PM, Berdalet E, Burford MA et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 77–90

    Google Scholar 

  • Wyatt T (2014) Margalef’s mandala and phytoplankton bloom strategies. Deep Sea Res II 101:32–49

    Article  Google Scholar 

Download references

Acknowledgments

This is a contribution of the GEOHAB Core Research Project on HABs in Upwelling Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant C. Pitcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pitcher, G.C., Figueiras, F.G., Kudela, R.M., Moita, T., Reguera, B., Ruiz-Villareal, M. (2018). Key Questions and Recent Research Advances on Harmful Algal Blooms in Eastern Boundary Upwelling Systems. In: Glibert, P., Berdalet, E., Burford, M., Pitcher, G., Zhou, M. (eds) Global Ecology and Oceanography of Harmful Algal Blooms . Ecological Studies, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-319-70069-4_11

Download citation

Publish with us

Policies and ethics