Advertisement

Statistical Analysis of the Impact of Molecular Descriptors on Antimicrobial Activity of Thiourea Derivatives Incorporating 3-amino-1,2,4-triazole Scaffold

  • Anna Filipowska
  • Wojciech Filipowski
  • Ewaryst Tkacz
  • Monika Wujec
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 623)

Abstract

The paper contains results of statistical and chemometric analysis for 15 thiourea derivatives containing the 3-amino-1,2,4-triazole moiety and characterized by antimicrobial activity against Staphylococcus aureus (NCTC 4163, ATCC 25923, ATCC 6538, ATCC 29213), Staphylococcus epidermidis (ATCC 12228) bacteria, as well as by low cytotoxicity (or lack thereof) against infected MT-4 cells. Multiple regression and cluster analysis were employed to perform the study. The research enabled obtaining linear relationships connected with three molecular descriptors SA, η, logP. The conducted chemometric analyses indicate that the increase in activity against the studied strains is closely related to the type and position of substituent in a phenyl ring.

Keywords

Statistical analysis cluster analysis antimicrobial activity thiourea derivatives 3-amino-1,2,4-triazole 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leonetti, F., Favia, A., Rao, A., Aliano, R., Paluszcak, A., Hartmann, R.W., Carotti, A. Design, synthesis, and 3D QSAR of novel potent and selective aromatase inhibitors. J. Med. Chem., 30, 6792–803, (2004)Google Scholar
  2. 2.
    Pierre, F., Stefan. E., Nédellec, A.S., Chevrel, M.C., Regan, C.F., Siddiqui-Jain, A., Macalino, D., Streiner, N., Drygin, D., Haddach,M., O’Brien, S.E., Anderes, K., Ryckman, D.M. 7-(4H-1,2,4-Triazol-3-yl)benzo[c] [2,6]naphthyridines: a novel class of Pimkinase inhibitors with potent cell antiproliferative activity. Bioorg. Med. Chem. Lett., 15, 6687–92, (2011)Google Scholar
  3. 3.
    Kumar, D., Narayanam, M.K., Chang, K.H., Shah. K. Synthesis of novel indolyl-1,2,4-triazoles as potent and selective anticancer agents. Chem. Biol. Drug. Des., 77, 182–188, (2011)Google Scholar
  4. 4.
    Sumangala, V., Poojary, B., Chidananda, N., Arulmoli, T., Shenoy,S. Facile synthesis, cytotoxic and antimicrobial activity studies of a new group of 6-aryl-3-[4-(methylsulfonyl)benzyl]-7H-[1,2,4]triazolo[ 3,4-b][1,3,4]thiadiazines. Eur. J. Med. Chem., 54, 59–64, (2012)Google Scholar
  5. 5.
    Ji, D., Lu, J., Lu, B., Xin, C., Mu, J., Li, J., Peng, C., Bao, X. Efficient synthesis and antimicrobial activity of some novel S-_-Dglucosidesof 5-aryl-1,2,4-triazole-3-thiones derivatives. Bioorg. Med. Chem. Lett.„ 23, 1997–2000, (2013)Google Scholar
  6. 6.
    Koparir, M., Orek, C., Parlak, A.E., Söylemez, A., Koparir, P., Karatepe, M., Dastan, S.D. Synthesis and biological activities of some novel aminomethyl derivatives of 4-substituted-5-(2-thienyl)- 2,4-dihydro-3H-1,2,4-triazole-3-thiones. Eur. J. Med. Chem., 63, 340–346, (2013)Google Scholar
  7. 7.
    Prakash, O., Aneja, D.K., Hussain, K., Lohan, P., Ranjan, P., Arora, S., Sharma, C. Aneja, K.R. Synthesis and biological evaluationof dihydroindeno and indeno [1,2-e] [1,2,4]triazolo [3,4-b] [1,3,4]thiadiazines as antimicrobial agents. Eur. J. Med. Chem. 2011, Tom 46, strony 5065-5073.Google Scholar
  8. 8.
    Stefanska J., Stepien K., Bielenica A., Szulczyk D., Miroslaw B., Koziol A. E., Sanna G., Iuliano F., Madeddu S., Jozwiak M., Struga M. Antimicrobial and Anti-biofilm Activity of Thiourea Derivatives Bearing 3-amino-1H-1,2,4-triazole Scaffold. Medicinal Chemistry., 12, 478–488, (2016)Google Scholar
  9. 9.
    Stefanska J., Szulczyk D., Koziol B. E., Miroslaw B., Kedzierska E., Fidecka S., Busonera B., Sanna G., Giliberti G., La Colla P., Struga M. Disubstituted thiourea derivatives and their activity on CNS: Synthesis and biological evaluation. European Journal of Medicinal Chemistry., 55, 205–213, (2012).Google Scholar
  10. 10.
    Hyper Chem. Hyper Chem (TM), Professional, Hypercube, Inc., 1115 NW 4th Street, Gainesville, Florida 32601, U.S.A. (2012)Google Scholar
  11. 11.
    Stefanska J., Nowicka G., Struga M., Szulczyk D., Koziol A.E., Augustynowicz-Kopec E., Napiorkowska A., Bielenica A., Filipowski W., Filipowska A., Drzewiecka A., Giliberti G., Madeddu S., Boi S., La Colla P., Sanna G., Antimicrobial and anti-biofilm activity of thiourea derivatives incorporating a 2-aminothiazole scaffold, Chemical and Pharmaceutical Bulletin (Tokyo), 63, 225–36 (2015)Google Scholar
  12. 12.
    Bodor N., Gabanyi Z., Wong C., A new method for the estimation of partition coefficient, J. Am. Chem. Soc.,111, 3783 (1989)Google Scholar
  13. 13.
    Filipowska A., Filipowski W., Tkacz E., Nowicka G., Struga M.,. Statistical analysis of the impact of molecular descriptors on cytotoxicity of thiourea derivatives incorporating 2-aminothiazole scaffold. Chemical and Pharmaceutical Bulletin., 64, 1196–1202, (2016)Google Scholar
  14. 14.
    Astela A., Biziukb M., Przyjaznyc A., Naminikb J., Chemometrics in monitoring spatial and temporal variations in drinking water quality, Water Research, 40, 1706–1716, (2006)Google Scholar
  15. 15.
    StatSoft, Inc. (2014). STATISTICA (data analysis software system), version 12. www.statsoft.com
  16. 16.
    Dehmer M., Varmuza K., Bonchev D., Emmert-Streib F., Statistical Modeling of Molecular Descriptors in QSAR/QSPR, Wiley-Blackwell, (2012)Google Scholar
  17. 17.
    Khaledian S., Saaidpour S. Quantitative Structure-property Relationship Modelling of Distribution Coefficients (logD7.4) of Diverse Drug by Sub-structural Molecular Fragments. Method Orient. J. Chem., 31, 1969–1976, (2015)Google Scholar
  18. 18.
    Filipowska A., Filipowski W., Tkacz E.,. Study of structure-cytotoxicity relationships of thiourea derivatives containing the 2-aminothiazole moiety, Innovations in biomedical engineering, Advances in Intelligent Systems and Computing. Innovations in Biomedical Engineering: Springer, 526, 276–285, (2017)Google Scholar
  19. 19.
    Carb R., Robert D., Amat L., Girones X., Besalu E. Molecular Quantum Similarity in QSAR and Drug Design, Lecture notes of chemistry 73, Springer-Verlag Berlin Heidelberg (2000)Google Scholar
  20. 20.
    Fukui K., Yonezawa T., Shingu H. A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons. J. Chem. Phys., 20, 722725, (1952)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Anna Filipowska
    • 1
    • 2
  • Wojciech Filipowski
    • 1
  • Ewaryst Tkacz
    • 2
  • Monika Wujec
    • 3
  1. 1.Faculty of Automatic Control, Electronics and Computer ScienceSilesian University of TechnologyGliwicePoland
  2. 2.Department of Biosensors and Processing of Biomedical SignalsSilesian University of TechnologyGliwicePoland
  3. 3.Department of Organic ChemistryMedical University of LublinLublinPoland

Personalised recommendations