Advertisement

Experimental and Numerical Investigation of a Heated Impinging Jet for a Small Nozzle-to-Plate Distance and High Reynolds Number

  • F. GandEmail author
  • P. Grenson
  • I. Mary
  • H. Deniau
  • P. Reulet
  • B. Aupoix
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 137)

Abstract

This paper presents a comprehensive study of an impinging jet configuration (Grenson et al, Int J Heat Mass Trans 102:801–815, 2016), which has been selected for its high Reynolds number ReD = 60,000, small nozzle-to-plate distance H/D = 3 and temperature difference between the heated jet and the ambient. First, the experiments are described and analysed, then numerical simulations (DNS, LES, ZDES and RANS) are assessed to evaluate the resolution level required to capture the salient features of this configuration.

Notes

Acknowledgements

The DNS and LES simulations presented in this paper were performed using HPC resources from GENCI-TGCC (Grants no c20142a7253 and x20152a7373).

References

  1. 1.
    Alekseenko, S., Markovich, D.: Local characteristics of impinging round jet. In: 3rd International Symposium on Engineering Turbulence Modelling and Measurements (1996)Google Scholar
  2. 2.
    Cambier, L., Heib, S., Plot, S.: The Onera elsA CFD software: input from research and feedback from industry, Mech. Ind. 14(3), 159–174 (2013).  https://doi.org/10.1051/meca/2013056
  3. 3.
    Dairay, T., Fortuné, V., Lamballais, E., Brizzi, L.-E.: Direct numerical simulation of a turbulent jet impinging on a heated wall. J. Fluid Mech. 764, 362–394 (2015).  https://doi.org/10.1017/jfm.2014.715
  4. 4.
    Deck, S.: Recent improvements of the zonal detached eddy simulation (ZDES) formulation. Theor. Comput. Fluid Dyn. 26, 523–550 (2012).  https://doi.org/10.1007/s00162-011-0240-z
  5. 5.
    Dewan, A., Dutta, R., Srinivasan, B.: Recent trends in computation of turbulent jet impingement heat transfer. Heat Trans. Eng. 33, 447–460 (2012).  https://doi.org/10.1080/01457632.2012.614154
  6. 6.
    Gand, F.: Investigation of turbulence development in incompressible jets with zonal detached eddy simulation (ZDES) and synthetic turbulent inflow. Int. J. Heat Fluid Flow.  https://doi.org/10.1016/j.ijheatfluidflow.2016.06.003 (in press, available online 30 June 2016)
  7. 7.
    Grenson, P., Deniau, H., Aupoix, B.: LES of a impinging heated jet for a small nozzle-to-plate distance. In: 11th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements, Palermo, Italy (2016)Google Scholar
  8. 8.
    Grenson, P., Léon, O., Reulet, P., Aupoix, B.: Investigation of an impinging heated jet for a small nozzle-to-plate distance and high Reynolds number: an extensive experimental approach. Int. J. Heat Mass Trans. 102, 801–815 (2016).  https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.076
  9. 9.
    Hadziabdic, M., Hanjalic, K.: Vortical structures and heat transfer in a round impinging jet. J. Fluids Mech. 596, 221–260 (2008).  https://doi.org/10.1017/S002211200700955X
  10. 10.
    Jarrin, N., Prosser, R., Uribe, J.-C., Benhamadouche, S., Laurence, D.: Reconstruction of turbulent fluctuations for hybrid RANS/LES simulations using a synthetic-eddy method. Int. J. Heat Fluid Flow 30(3), 435–442 (2009).  https://doi.org/10.1016/j.ijheatfluidflow.2009.02.016
  11. 11.
    Mary, I., Sagaut, P.: Large eddy simulation of flow around an airfoil near stall. AIAA J. 40(6), 1139–1145 (2002)Google Scholar
  12. 12.
    Uddin, N., Neumann, S.O., Weigand, B.: LES simulations of an impinging jet: on the origin of the second peak in the Nusselt number distribution. Int. J. Heat Mass Trans. 57(1), 356–368 (2013).  https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.052
  13. 13.
    Verrière, J., Gand, F., Deck, S.: Zonal detached-eddy simulations of a dual-stream jet. AIAA J.  https://doi.org/10.2514/1.J054896 (in press, available online 30 June 2016)
  14. 14.
    Zuckerman, N., Lior, N.: Jet impingement heat transfer: physics, correlations, and numerical modeling. Adv. Heat Trans. 39, 565–631 (2006).  https://doi.org/10.1016/S0065-2717(06)39006-5

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • F. Gand
    • 1
    Email author
  • P. Grenson
    • 2
  • I. Mary
    • 3
  • H. Deniau
    • 2
  • P. Reulet
    • 2
  • B. Aupoix
    • 2
  1. 1.ONERA – The French Aerospace LabMeudonFrance
  2. 2.ONERA – The French Aerospace LabToulouseFrance
  3. 3.ONERA – The French Aerospace LabChâtillonFrance

Personalised recommendations