Advertisement

Hybrid RANS-LES Turbulence Modelling in Aeroelastic Problems, Test Case 3 from the Second AIAA Aeroelastic Prediction Workshop

  • M. RighiEmail author
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 137)

Abstract

Prediction of the dynamic response of aircraft in the entire flight envelope is necessary in order to define stability margins in any possible operative situation, in particular where the flow is strongly affected by compressibility and viscous effects. Complex flow phenomena appear such as shock induced boundary layer separations, characterized by multiple turbulent time and lenghtscales. Aeroelasticists traditionally prefer the URANS approach; however, hybrid RANS-LES simulations are increasingly popular, at least among researchers. The Second AIAA Aeroelastic Prediction Workshop has proposed a test case, Test Case 3, where the flow physics may benefit from the higher physical consistence of RANS-LES modelling. A number of considerations, prompted by the discussions with the organizers and participants, are proposed.

References

  1. 1.
    Tsinober, A.: The Essence of Turbulence as a Physical Phenomenon (2014)Google Scholar
  2. 2.
    Dansberry, B.E., Durham, M.H., Bennett, R.M., Turnock, D.L., Silva, E.A., Jose A., Rivera, Jr.: Physical Properties of the Benchmark Models Program Supercritical Wing, vol. 4457. Citeseer (1993)Google Scholar
  3. 3.
    Fureby, C.: Towards the use of large eddy simulation in engineering. Prog. Aerosp. Sci. 44(6), 381–396 (2008)Google Scholar
  4. 4.
    Spode, C., Molina, E., Silva, R.G., Silva, C.: Plans and suggestions of a verification case to the aiaa aeroelastic prediction workshop. In: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech Forum. American Institute of Aeronautics and Astronautics, AIAA, p. 0188, 9–13 Jan 2017Google Scholar
  5. 5.
    Raveh, D.E.: Numerical study of an oscillating airfoil in transonic buffeting flows. AIAA J. 47(3), 505–515 (2009)Google Scholar
  6. 6.
    Schuster, D.M., Heeg, J., Wieseman, C., Chwalowski, P.: Analysis of test case computations and experiments for the aeroelastic prediction workshop. In: AIAA Paper 2013, vol. 788 (2013)Google Scholar
  7. 7.
    Grinstein, F.F., Margolin, L.G., Rider, W.J.: Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics. Cambridge University Press (2007)Google Scholar
  8. 8.
    Jack, R.: Edwards. Numerical simulations of shock/boundary layer interactions using time-dependent modeling techniques: a survey of recent results. Prog. Aerosp. Sci. 44(6), 447–465 (2008)Google Scholar
  9. 9.
    Housman, J.A., Kiris, C.C.: Overset grid simulations for the second aiaa aeroelastic prediction workshop. In: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech Forum, p. 0640. American Institute of Aeronautics and Astronautics, AIAA, 9–13 Jan 2017Google Scholar
  10. 10.
    Heeg, J., Chwalowski, P.: Investigation of the transonic flutter boundary of the benchmark supercritical wing. In: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech Forum, p. 0191. American Institute of Aeronautics and Astronautics, AIAA, 9–13 Jan 2017Google Scholar
  11. 11.
    Heeg, J., Chwalowski, P., Raveh, D., Jirasek, A., Dalenbring, M.: Overview and data comparisons from the 2nd aeroelastic prediction workshop. In: AIAA Paper 2016-3121 (2016)Google Scholar
  12. 12.
    Heeg, J., Chwalowski, P., Schuster, D.M., Raveh, D., Jirasek, A., Dalenbring, M.: Plans and example results for the 2nd AIAA Aeroelastic Prediction Workshop. In: AIAA Paper (2015)Google Scholar
  13. 13.
    Fröhlich, J., von Terzi, D.: Hybrid les/rans methods for the simulation of turbulent flows. Prog. Aerosp. Sci. 44(5), 349–377 (2008)Google Scholar
  14. 14.
    Righi, M., Da Ronch, A., Mazzacchi, F.: Analysis of resolved turbulent scales of motion in aeroelastic problems. In: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech Forum, p. 0189. American Institute of Aeronautics and Astronautics, AIAA, 9–13 Jan 2017Google Scholar
  15. 15.
    Iovnovich, M., Raveh, D.E.: Reynolds-averaged Navier-Stokes study of the shock-buffet instability mechanism. AIAA J. 50(4), 880–890 (2012)Google Scholar
  16. 16.
    Bendiksen, O.O.: Review of unsteady transonic aerodynamics: theory and applications. Progr. Aerosp. Sci. 47(2), 135–167 (2011)Google Scholar
  17. 17.
    Chwalowski, P., Heeg, J., Biedron, R.T.: Numerical investigation of the benchmark supercritical wing in transonic flow. In: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech Forum, p. 0190. American Institute of Aeronautics and Astronautics, AIAA, 9–13 Jan 2017Google Scholar
  18. 18.
    Eliasson, P.: Edge, a navier-stokes solver for unstructured grids, scientific report foi-r–0298–se. Technical report, Computational Aerodynamics Department, Aeronautics Division, FOI 2001Google Scholar
  19. 19.
    Spalart, P.R., Allmaras, S.R.: A one equation turbulence model for aerodinamic flows. AIAA J. 94 (1992)Google Scholar
  20. 20.
    Spalart, P.R.: Philosophies and fallacies in turbulence modeling. Prog. Aerosp. Sci. 74, 1–15 (2015)Google Scholar
  21. 21.
    Sagaut, P., Deck, S.: Large eddy simulation for aerodynamics: status and perspectives. Philos. Trans. R. Soc. Lon. A Math. Phys. Eng. Sci. 367(1899), 2849–2860 (2009)Google Scholar
  22. 22.
    Bisplinghoff, R.L., Ashley, H.: Principles of Aeroelasticity. Courier Corporation (2013)Google Scholar
  23. 23.
    Carrese, R., Marzocca, P., Levinski, O., Joseph, N.: Investigation of supercritical airfoil dynamic response due to transonic buffet. AIAA Paper 2016-1552 (2016)Google Scholar
  24. 24.
    Deck, S., Terracol, M.: Multiscale and Multiresolution Approaches in Turbulence. World Scientific (2006)Google Scholar
  25. 25.
    Deck, S.: Numerical simulation of transonic buffet over a supercritical airfoil. AIAA J. 43(7), 1556–1566 (2005)Google Scholar
  26. 26.
    Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoret. Comput. Fluid Dyn. 20(3), 181–195 (2006)Google Scholar
  27. 27.
    Wallin, S., Johansson, A.V.: A new explicit algebraic Reynolds stress turbulence model for 3 D flow. In: Symposium on Turbulent Shear Flows, 11 th, Grenoble, France, pp. 13–13 (1997)Google Scholar
  28. 28.
    Wallin, S., Johansson, A.V.: An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. J. Fluid Mech. 403, 89–132 (2000)Google Scholar
  29. 29.
    Economon, T.D., Palacios, F., Copeland, S.R., Lukaczyk, T.W., Alonso, J.J.: Su2: an open-source suite for multiphysics simulation and design. AIAA J. 54(3), 828–846 (2015)Google Scholar
  30. 30.
    Silva, W.A., Chwalowski, P., Perry III, B.: Evaluation of linear, inviscid, viscous, and reduced-order modelling aeroelastic solutions of the agard 445.6 wing using root locus analysis. Int. J. Comput. Fluid Dyn. 28(3-4), 122–139 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Zurich University of Applied SciencesWinterthurSwitzerland

Personalised recommendations