Advertisement

Hybrid RANS/LES Capabilities of the Flow Solver FLOWer—Application to Flow Around Wind Turbines

  • Pascal WeihingEmail author
  • Johannes Letzgus
  • Galih Bangga
  • Thorsten Lutz
  • Ewald Krämer
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 137)

Abstract

The compressible block-structured flow solver FLOWer of the German Aerospace Center (DLR) has been extended towards state of the art detached-eddy simulation (DES) methods in order to conduct hybrid RANS/LES simulations of flow around rotary wings. The large-eddy simulation (LES) capabilities of the code are demonstrated for decaying isotropic turbulence. Excessive numerical dissipation is avoided by using the fifth-order WENO scheme and an appropriate low-Mach number correction. The DES implementations are validated first for the well documented test cases backward facing step and NACA0021 airfoil at \(60^\circ \) incidence, before increasing the complexity by simulating the flow around the MEXICO model wind turbine operating in stalled conditions and comparing with experimental data. From the latter, recommendations on the numerical settings are derived to successfully set up eddy resolving simulations for wind turbine or helicopter applications.

Notes

Acknowledgements

The authors acknowledge the German Federal Ministry for Economic Affairs and Energy for funding this studies in the framework of the German joint research project Assist and the High Performance Computing Center Stuttgart for providing computational resources.

References

  1. 1.
    Benek, J.A., Steger, J.L., Dougherty, F.C., Buning, P.G.: In: Chimera. A Grid-Embedding Technique (1986)Google Scholar
  2. 2.
    Garbaruk, A., Shur, M., Strelets, M., Travin, A.: Naca0021 at \(60^{\circ }\) incidence. DESider—A European Effort on Hybrid RANS-LES Modelling, pp. 127–139. Springer, Berlin (2009)Google Scholar
  3. 3.
    Gritskevich, M., Garbaruk, A., Menter, F.: Fine-tuning of ddes and iddes formulations to the k-\(\omega \) shear stress transport model. In: Progress in Flight Physics, vol. 5, pp. 23–42. EDP Sciences (2013)Google Scholar
  4. 4.
    Jameson, A.: Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. In: AIAA Paper, 1596:1991 (1991)Google Scholar
  5. 5.
    Jameson, A., Schmidt, W., Turkel, E., et al.: Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. In: AIAA Paper, 1259:1981 (1981)Google Scholar
  6. 6.
    Johansen, J., Sørensen, N.N., Michelsen, J., Schreck, S.: Detached-eddy simulation of flow around the NREL phase VI blade. Wind Energy 5(2–3), 185–197 (2002)Google Scholar
  7. 7.
    Kowarsch, U., Oehrle, C., Keßler, M., Krämer, E.: High order CFD-simulation of the rotor-fuselage interaction (2013)Google Scholar
  8. 8.
    Kowarsch, U., Oehrle, C., Keßler, M., Krämer, E.: Aeroacoustic simulation of a complete H145 helicopter in descent flight (2015)Google Scholar
  9. 9.
    Kroll, N., Rossow, C.-C., Becker, K., Thiele, F.: The megaflow project. Aerosp. Sci. Technol. 4(4), 223–237 (2000)Google Scholar
  10. 10.
    Mendonca, F., Read, A., Caro, S., Debatin, K., Caruelle, B.: Aeroacoustic simulation of double diaphragm orifices in an aircraft climate control system. In: 11th AIAA/CEAS Aeroacoustics Conference, p. 2976 (2005)Google Scholar
  11. 11.
    Menter, F., Egorov, Y.: Formulation of the scale-adaptive simulation (sas) model during the desider project. In: Desider—A European Effort on Hybrid RANS-LES Modelling, pp. 51–62. Springer, Berlin (2009)Google Scholar
  12. 12.
    Oßwald, K., Siegmund, A., Birken, P., Hannemann, V., Meister, A.: L2roe: a low dissipation version of roe’s approximate Riemann solver for low mach numbers. Int. J. Numer. Methods Fluids (2015)Google Scholar
  13. 13.
    Schepers, J., Snel, H.: Model experiments in controlled conditions. ECN Report (2007)Google Scholar
  14. 14.
    Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: A hybrid rans-les approach with delayed-des and wall-modelled les capabilities. Int. J. Heat Fluid Flow 29(6), 1638–1649 (2008)Google Scholar
  15. 15.
    Sørensen, N.N., Hansen, M.O.L., Garcia, N.R., Florentie, L., Boorsma, K.: Avatar Power Curve Predictions (2014)Google Scholar
  16. 16.
    Spalart, P.: Young-person’s guide simulation grids to detached-eddy. Seattle, Washington, NASA/CR-2001-211032 (2001)Google Scholar
  17. 17.
    Spalart, P.R., Deck, S., Shur, M., Squires, K., Strelets, M.K., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20(3), 181–195 (2006)Google Scholar
  18. 18.
    Swalwell, K., Sheridan, J., Melbourne, W.: Frequency analysis of surface pressures on an airfoil after stall. In: AIAA Paper, 3416:2003 (2003)Google Scholar
  19. 19.
    Vogel, J., Eaton, J.: Combined heat transfer and fluid dynamic measurements downstream of a backward-facing step. J. Heat Transf. 107(4), 922–929 (1985)Google Scholar
  20. 20.
    Wray, A.A.: Unpublished DNS Data (1997)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Pascal Weihing
    • 1
    Email author
  • Johannes Letzgus
    • 1
  • Galih Bangga
    • 1
  • Thorsten Lutz
    • 1
  • Ewald Krämer
    • 1
  1. 1.Institute of Aerodynamics and Gas DynamicsStuttgartGermany

Personalised recommendations