Advertisement

On the Convection Velocity of Wall-Bounded Turbulence Resolved by ZDES Mode III at \(Re_\theta = 13 000\)

  • Nicolas RenardEmail author
  • S. Deck
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 137)

Abstract

WMLES simulations of a flat-plate zero-pressure-gradient boundary layer are done with the Zonal Detached Eddy Simulation Mode III technique over a wide range of Reynolds numbers \(3\,150 \le Re_\theta \le 14\,000\). A WMLES field is compared with the WRLES interpolated onto the WMLES mesh. Two interface heights are considered, \(y_\text {interface} = 0.1 \delta \) and \(y^+_\text {interface} = 3.9 \sqrt{Re_\tau }\). The prediction and resolved fraction of mean skin friction is discussed, as well as remaining issues, especially in the logarithmic layer. An excess of high-wavelength streamwise velocity fluctuations is observed below the RANS/LES interface with \(y^+_\text {interface} = 3.9 \sqrt{Re_\tau }\), and studied by a spectral convection velocity analysis, leading to the suggestion that it may be a footprint of coherent structures located further away from the wall.

Notes

Acknowledgements

The authors wish to thank all the people involved in the past and present evolution of the FLU3M code. Romain Laraufie and Pierre-Élie Weiss are warmly acknowledged for very stimulating discussions. The fine mesh WRLES computation was made thanks to the HPC resources from GENCI-CINES (Project ZDESWALLTURB, Grant 2012-[c2012026817]).

References

  1. 1.
    del Álamo, J.C., Jiménez, J.: Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 640, 5–26 (2009)Google Scholar
  2. 2.
    Chen, S., Xia, Z., Pei, S., Wang, J., Yang, Y., Xiao, Z., Shi, Y.: Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows. J. Fluid Mech. 703, 1–28 (2012)Google Scholar
  3. 3.
    Deck, S.: Recent improvements in the Zonal Detached Eddy Simulation (ZDES) formulation. Theor. Comput. Fluid Dyn. 26, 523–550 (2012)Google Scholar
  4. 4.
    Deck, S., Gand, F., Brunet, V., Khelil, S.B.: High-fidelity simulations of unsteady civil aircraft aerodynamics: stakes and perspectives. Application of Zonal Detached Eddy Simulation (ZDES). Philos. Trans. R. Soc. A 372, 20130325 (2014)Google Scholar
  5. 5.
    Deck, S., Laraufie, R.: Numerical investigation of the flow dynamics past a three-element aerofoil. J. Fluid Mech. 732, 401–444 (2013)Google Scholar
  6. 6.
    Deck, S., Renard, N., Laraufie, R., Sagaut, P.: Zonal detached eddy simulation (ZDES) of a spatially developing flat plate turbulent boundary layer over the Reynolds number range \(3\,150 \le Re_\theta \le 14\,000\). Phys. Fluids 26, 025116 (2014)Google Scholar
  7. 7.
    Deck, S., Renard, N., Laraufie, R., Weiss, P.E.: Large scale contribution to mean wall shear stress in high Reynolds number flat plate boundary layers up to \(Re_\theta =13\,650\). J. Fluid Mech. 743, 202–248 (2014).  https://doi.org/10.1017/jfm.2013.629
  8. 8.
    Deck, S., Weiss, P.E., Pamiès, M., Garnier, E.: Zonal detached eddy simulation of a spatially developing flat plate turbulent boundary layer. Comput. Fluids 48, 1–15 (2011)Google Scholar
  9. 9.
    Deck, S., Weiss, P.E., Pamiès, M., Garnier, E.: On the use of stimulated detached eddy simulation (SDES) for spatially developing boundary layers. In: Advances in Hybrid RANS-LES Modelling, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 97, pp. 67–76. Springer (2007)Google Scholar
  10. 10.
    DeGraaff, D.B., Eaton, J.K.: Reynolds number scaling of the flat plate turbulent boundary layer. J. Fluid Mech. 422, 319–346 (2000)Google Scholar
  11. 11.
    Fukagata, K., Iwamoto, K., Kasagi, N.: Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14(11), 73–76 (2002)Google Scholar
  12. 12.
    Gieseking, D.A., Choi, J.I., Edwards, J.R., Hassan, H.A.: Compressible-flow simulations using a new large-eddy simulation/Reynolds-averaged NavierStokes Model. AIAA J. 49(10), 2194–2209 (2011)Google Scholar
  13. 13.
    Jiménez, J.: Cascades in wall-bounded turbulence. Annu. Rev. Fluid Mech. 44, 27–45 (2012)Google Scholar
  14. 14.
    Keating, A., Piomelli, U.: A dynamic stochastic forcing method as a wall-layer model for large-eddy simulation. J. Turbul. 7(12), 24 (2006)Google Scholar
  15. 15.
    Laraufie, R., Deck, S.: Zonal detached eddy simulation (ZDES) study of a 3D curved duct. In: Hanjalic, K., Nagano, Y., Borello, D., Jakirlic , S. (eds.) Proceedings of the Seventh International Symposium on Turbulence, Heat and Mass Transfer, pp. 511–514. Begell House Inc. (2012)Google Scholar
  16. 16.
    Laraufie, R., Deck, S.: Assessment of Reynolds stresses tensor reconstruction methods for synthetic turbulent inflow conditions. Application to hybrid RANS/LES methods. Int. J. Heat Fluid Flow 42, 68–78 (2013)Google Scholar
  17. 17.
    Marusic, I., Mathis, R., Hutchins, N.: High Reynolds number effects in wall turbulence. Int. J. Heat Fluid Flow 31, 418–428 (2010)Google Scholar
  18. 18.
    Marusic, I., McKeon, B.J., Monkewitz, P.A., Nagib, H.M., Smits, A.J., Sreenivasan, K.R.: Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22, 065103–1/24 (2010)Google Scholar
  19. 19.
    Mary, I., Sagaut, P.: Large eddy simulation of flow around an airfoil near stall. AIAA J. 40, 1139–1145 (2002)Google Scholar
  20. 20.
    Nagib, H.M., Chauhan, K.A., Monkewitz, P.A.: Approach to an asymptotic state for zero pressure gradient turbulent boundary layers. Philos. Trans. R. Soc. A 365, 755–770 (2007)Google Scholar
  21. 21.
    Nikitin, N.V., Nicoud, F., Wasistho, B., Squires, K.D., Spalart, P.R.: An approach to wall modeling in large-eddy simulations. Phys. Fluids 12(7), 1629–1632 (2000)Google Scholar
  22. 22.
    Pamiès, M., Weiss, P.E., Garnier, E., Deck, S., Sagaut, P.: Generation of synthetic turbulent inflow data for large eddy simulation of spatially evolving wall-bounded flows. Phys. Fluids 21, 045103 (2009)Google Scholar
  23. 23.
    Park, G.I., Moin, P.: An improved dynamic non-equilibrium wall-model for large eddy simulation. Phys. Fluids 26, 015108 (2014)Google Scholar
  24. 24.
    Piomelli, U.: Wall-layer models for large-eddy simulations. Prog. Aerosp. Sci. 44, 437–446 (2008)Google Scholar
  25. 25.
    Renard, N., Deck, S.: On the interface positioning in a zonal detached eddy simulation (ZDES) of a spatially developing flat plate turbulent boundary layer. In: Girimaji, S., Haase, W., Peng, S.H., Schwamborn, D. (eds.) Progress in Hybrid RANS-LES Modelling, Papers contributed to the 5th Symposium on Hybrid RANS-LES methods, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 130. Springer, College Station, A&M University, Texas (2014)Google Scholar
  26. 26.
    Renard, N., Deck, S.: Improvements in zonal detached eddy simulation for wall modeled large eddy simulation. AIAA J. 53(11), 3499–3504 (2015).  https://doi.org/10.2514/1.J054143
  27. 27.
    Renard, N., Deck, S.: On the scale-dependent turbulent convection velocity in a spatially developing flat plate turbulent boundary layer at Reynolds number \(Re_\theta = 13\,000\). J. Fluid Mech. 775, 105–148 (2015)Google Scholar
  28. 28.
    Sagaut, P., Deck, S., Terracol, M.: Multiscale and Multiresolution Approaches in Turbulence—LES, DES and Hybrid RANS/LES Methods: Applications and Guidelines, 2nd edn. Imperial College Press (2013)Google Scholar
  29. 29.
    Shen, M., Edwards, J.R.: Development of a new LES/RANS formulation. In: AIAA Aviation 46th AIAA Fluid Dynamics Conference, AIAA 2016-3638, Washington, D.C., pp. 1–16 (2016)Google Scholar
  30. 30.
    Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)Google Scholar
  31. 31.
    Smits, A.J., McKeon, B.J., Marusic, I.: High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353–375 (2011)Google Scholar
  32. 32.
    Spalart, P.R.: Detached-eddy simulation. Annu. Rev. Fluid Mech. 41, 181–202 (2009)Google Scholar
  33. 33.
    Spalart, P.R., Jou, W.H., Strelets, M., Allmaras, S.R.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Liu, C., Liu, Z. (eds.) Proceedings of the First AFOSR International Conference on DNS/LES, pp. 137–147. Greyden Press (1997)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Onera The French Aerospace LabMeudonFrance

Personalised recommendations