Advertisement

Detached Eddy Simulation of an SD7003 Airfoil

  • Eike TangermannEmail author
  • Markus Klein
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 137)

Abstract

Laminar separation followed by transition and turbulent reattaching is a key challenge for computational fluid dynamics. Typical RANS models cannot reproduce this behaviour correctly, while LES or DNS only is affordable for quasi two-dimensional configurations. Hybrid RANS-LES models offer a method to reduce the computational effort and resolve larger configurations at reasonable cost. For the present study the simulation of laminar separation on a SD 7003 airfoil has been performed using LES and DDES in order to validate the DDES for this type of application.

References

  1. 1.
    Catalano, P., Tognaccini, R.: Numerical analysis of the flow around the sd 7003 airfoil. In: 48th AIAA Aerospace Sciences Meeting and Exhibit, Orlando, FL, AIAA paper, vol. 68 (2010)Google Scholar
  2. 2.
    Catalano, P., Tognaccini, R.: Turbulence modeling for low-reynolds-number flows. AIAA journal 48(8), 1673–1685 (2010)CrossRefGoogle Scholar
  3. 3.
    Catalano, P., Tognaccini, R.: Large eddy simulations of the flow around the SD7003 airfoil. In: AIMETA Conference (2011)Google Scholar
  4. 4.
    Galbraith, M., Visbal, M.: Implicit large eddy simulation of low reynolds number flow past the sd7003 airfoil. AIAA paper 225, 2008 (2008)Google Scholar
  5. 5.
    Hain, R., Kähler, C.J., Radespiel, R.: Dynamics of laminar separation bubbles at low-Reynolds-number aerofoils. Journal of Fluid Mechanics 630, 129–153 (2009)CrossRefzbMATHGoogle Scholar
  6. 6.
    Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, turbulence and Combustion 62(3), 183–200 (1999)CrossRefzbMATHGoogle Scholar
  7. 7.
    Ol, M.V., McAuliffe, B.R., Hanff, E.S., Scholz, U., Kähler, C.: Comparison of laminar separation bubble measurements on a low reynolds number airfoil in three facilities. AIAA paper 5149(1), (2005)Google Scholar
  8. 8.
    Schmidt, S., Breuer, M.: Source term based synthetic turbulence inflow generator for eddy–resolving predictions of an airfoil flow including a laminar separation bubble. Computers & Fluids (2016)Google Scholar
  9. 9.
    Selig, M.S., Donovan, J.F., Fraser, D.B.: Airfoils at low speeds (1989)Google Scholar
  10. 10.
    Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K., Travin, A.: A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities. Theoretical and Computational Fluid Dynamics 20(3), 181–195 (2006).  https://doi.org/10.1007/s00162-006-0015-0
  11. 11.
    Xu, J., Zhang, Y., Bai, J.: One-equation turbulence model based on extended bradshaw assumption. AIAA Journal 53(6), 1433–1441 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Numerical Methods in Aerospace EngineeringUniversität der Bundeswehr MünchenNeubibergGermany

Personalised recommendations