Advertisement

Numerical Simulation of a 3-D Laminar Wing in Transonic Regime

  • D. SzubertEmail author
  • I. Asproulias
  • N. Simiriotis
  • Y. Hoarau
  • M. Braza
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 137)

Abstract

The present paper details the simulations carried out for the 3D-V2C wing configuration designed by Dassault Aviation in the context of the TFAST—Transition location effect on shock boundary layer interaction—European programme. The results concern the constant section wing and the swept one. In the second case, the transition location is imposed by numerical tripping of the eddy-viscosity to examine the impact of its location on the buffet’s onset. The computations have been carried out by using URANS, OES and hybrid approaches. The results analyse the transonic buffet dynamics by means of spectral and POD analysis in case of the constant section wing. They also examine onset of unsteadiness at 5° and 7° of incidence for the swept wing. Because of the chord’s length variation, there are sections where the local Reynolds number is subcritical or supercritical regarding the buffet instability.

Notes

Acknowledgements

This work has been part of the EU project TFAST, “Transition location effect on shock boundary layer interaction”, coordinated by P. Doerffer—IMP-PAN—Gdansk, Poland and funded by the European Community represented by the CEC, Research Directorate-General, in the 7th Framework Programme, under Grant Agreement N° 265455. The authors are grateful for the use of the French supercomputing facilities of CINES, IDRIS, CALMIP which provided a significant CPU allocation. The authors thank the students of the BEI Bureau d’Etudes Approfondies of the Engineering school ENSEEIHT, Jean-Baptiste Tô, Julien Saint James and Julien Charcosset for their valuable contributions.

References

  1. 1.
    Berkooz, G., Holmes, P., Lumley, J.L.: The proper orhogonal decomposition in the analysis of turbulent flows. Ann. Rev. Fluid Mech. 25, 539–575 (1993)Google Scholar
  2. 2.
    Bourguet, R., Braza, M., Harran, G., El Akoury, R.: J. Fluids Struct. 24(8), 1240–1251 (2008)Google Scholar
  3. 3.
    Braza, M., Perrin, R., Hoarau, Y.: Turbulence properties in the cylinder wake at high Reynolds number. J. Fluids Struct. 22, 757–771 (2006)Google Scholar
  4. 4.
    Cleansky European project. Call 11 - GRA-02-019, advanced, high aspect ratio transonic laminar wing for regional aircraft with load controll & alleviation devices (2013–2016)Google Scholar
  5. 5.
    Deck, S.: Numerical computation of transonic buffet over a supercritical airfoil. AIAA J. 43 (7), 1556–1566 (2005)Google Scholar
  6. 6.
    Grossi, F., Braza, M., Hoarau, Y.: Prediction of transonic buffet by delayed detached-eddy simulation. AIAA J. 52(10), 2300–2312 (2014)Google Scholar
  7. 7.
    Hoarau, Y., Pena, D., Vos, J.B., Charbonnier, D., Gehri, A., Braza, M., Deloze, T., Laurendeau, E.: Recents developments of the Navier-Stokes multi-block (NSMB) CFD solver. In: AIAA Paper, pp. 2016–2056. San Diego, USA (2005)Google Scholar
  8. 8.
    Jacquin, L., Molton, P., Deck, S., Maury, B., Soulevant, D.: Experimental study of shock oscillation over a transonic supercritical profile. AIAA J. 47(9), 1985–1994 (2009)Google Scholar
  9. 9.
    Jacquin, L., Molton, P., Deck, S., Maury, B., Soulevant, D.: An experimental study of shock oscillation over a transonic supercritical profile. In: 35th AIAA Fluid Dynamics Conference and Exhibit, Toronto, Ontario, Canada, AIAA 2005-4902 (2005)Google Scholar
  10. 10.
    Lee, B.H.K.: Oscillatory shock motion caused by transonic shock boundary-layer interaction. AIAA J. 28(5), 942–944 (1990)Google Scholar
  11. 11.
    McDevitt, J.B., Levy Jr., L.L., Deiwert, G.S.: Transonic flow about a thick circular arc airfoil. AIAA J. 14(5), 606–613 (1976)Google Scholar
  12. 12.
    Menter, F.R.: AIAA J. 32(8), 1598–1605 (1994)Google Scholar
  13. 13.
    Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)Google Scholar
  14. 14.
    Seegmiller, H.L., Marvin, J.G., Levy Jr., L.L.: Steady and unsteady transonic flow. AIAA J. 16(12), 1262–1270 (1978)Google Scholar
  15. 15.
    Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20(6), 181–195 (2006)Google Scholar
  16. 16.
    Spalart, P.R., Rumsey, C.L.: Effective inflow conditions for turbulence models in aerodynamic calculations. AIAA J. 45(10), 2544–2553 (2007)Google Scholar
  17. 17.
    Szubert, D., Grossi, F., Jimenez-Garcia, A., Hoarau, Y., Hunt, J., Braza, M.: Shock-vortex shear-layer interaction in the transonic flow around a supercritical airfoil at high Reynolds number in buffet conditions. J. Fluids Struct. 55, 276–302 (2015)Google Scholar
  18. 18.
    Szubert, D., Asproulias, I., Grossi, F., Duvigneau, R., Hoarau, Y., Braza, M.: Numerical study of the turbulent transonic interaction and transition location effect involving optimisation around a supercritical airfoil. Eur. J. Mech. B Fluids 55(2), 380–393 (2016)Google Scholar
  19. 19.
    Van Leer, B.: Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)Google Scholar
  20. 20.
    Vos, J., Chaput, E., Arlinger, B., Rizzi, A., Corjon, A.: Recent advances in aerodynamics inside the NSMB (Navier-Stokes multi-block) consortium. In: AIAA Paper 1998-0802, Reno, USA (1998)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • D. Szubert
    • 1
    • 2
    Email author
  • I. Asproulias
    • 1
  • N. Simiriotis
    • 1
  • Y. Hoarau
    • 3
  • M. Braza
    • 1
  1. 1.Institut de Mécanique des Fluides de ToulouseToulouseFrance
  2. 2.DGA ThTechniques HydrodynamiquesVal-de-ReuilFrance
  3. 3.ICube, UMR CNRS 7357Strasbourg UniversityStrasbourgFrance

Personalised recommendations