Computational Investigation of a Swirled Premixed Burner Using Hybrid RANS-LES Method

  • Z. MansouriEmail author
  • T. Boushaki
  • M. Aouissi
  • I. Gökalp
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 137)


High turbulent swirling reacting flow is investigated in a swirled premixed burner using hybrid RANS-LES method. The hybrid method is the Detached Eddy Simulation (DES) and it is combined with the Finite-Rate/Eddy Dissipation (FR/EDM) combustion model to treat turbulence-chemistry interaction. The instantaneous flow fields are well captured by DES and the premixed flame is well reproduced by FR/EDM. It is shown that DES is capable to reproduce the experimental profiles of the mean axial velocity and temperature. Phase-angle analysis of the instantaneous flow field shows the presence of large-scale coherent structures. Q-criterion is used to visualize the 3D behaviour of the structures; it is found that the unsteady flow contains a Precessing Vortex Core (PVC) and Secondary Outer Vortex (SOV).


  1. 1.
    Anacleto, P.M., Fernandes, E.C., Heitor, M.V., Shtork, S.I.: Swirl flow structure and flame characteristics in a model lean premixed combustor. Combust. Sci. Technol. 175, 1369–1388 (2003)Google Scholar
  2. 2.
    Cala, C.E., Fernandes, E.C., Heitor, M.V., Shtork, S.I.: Coherent structures in unsteady swirling jet flow. Exp. Fluids 40, 267–276 (2006)Google Scholar
  3. 3.
    Fernandes, E.C., Heitor, M.V., Shtork, S.I.: An analysis of unsteady highly turbulent swirling flow in a model vortex combustor. Exp. Fluids 40, 177–187 (2006)Google Scholar
  4. 4.
    Fogla, N., Creta, F., Matalon, M.: Effect of folds and pockets on the topology and propagation of premixed turbulent flames. Combust. Flame 162, 2758–2777 (2015)Google Scholar
  5. 5.
    Gupta, A.K., Lilley, D.G., Syred, N.: Swirl Flows. Abacus Press, Tunbridge Wells, UK (1984)Google Scholar
  6. 6.
    Hunt, J.C.R., Wray, A.A., Moin, P.: Eddies, streams, and convergence zones in turbulent flows. Center for Turbulence Research. Report CTR-S88. 193–208 (1988)Google Scholar
  7. 7.
    Krishnamoorthy, G., Rawat, R., Smith, P.J.: Parallelization of the P-1 radiation model. Numer. Heat Trans. B- Fund. 49, 1–17 (2006)Google Scholar
  8. 8.
    Lucca-Negro, O., O’Doherty, T.: Vortex breakdown: a review. Prog. Energy Combust. Sci. 25, 431–481 (2001)Google Scholar
  9. 9.
    Magnussen, B.F., Hjertager, B.H.: On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Proc. Combust. Inst. 16, 719–729 (1977)Google Scholar
  10. 10.
    Mansouri, Z., Aouissi, M., Boushaki, T.: A numerical study of swirl effects on the flow and flame dynamics in a lean premixed combustor. Int. J. Heat Technol. 34, 227–235 (2016)Google Scholar
  11. 11.
    Mansouri, Z., Aouissi, M., Boushaki, T.: Numerical computations of premixed propane flame in a swirl-stabilized burner: effects of hydrogen enrichment, swirl number and equivalence ratio on flame characteristics. Int. J. Hydrog. Energy 41, 9664–9678 (2016)Google Scholar
  12. 12.
    Mansouri, Z., Aouissi, M., Boushaki, T.: Detached eddy simulation of high turbulent swirling reacting flow in a premixed model burner. Combust. Sci. Technol. 188(10) (Accepted article to appear in October 2016)Google Scholar
  13. 13.
    Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)Google Scholar
  14. 14.
    Nogenmyr, K.J., Furebyb, C., Bai, X.S., Petersson, P., Collin, R., Linne, M.: Large eddy simulation and laser diagnostic studies on a low swirl stratified premixed flame. Combust. Flame 156, 25–36 (2009)Google Scholar
  15. 15.
    Shtork, S.I., Cala, C.E., Fernandes, E.C.: Experimental characterization of rotating flow field in a model vortex burner. Exp. Therm. Fluid. Sci. 31, 779–788 (2007)Google Scholar
  16. 16.
    Spalart, P.R., Jou W.H., Strelets, M., Allmaras, S.R.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. Advances in DNS/LES. In: Proceeding of the First AFOSR International Conference on DNS/LES. Greyden Press, Louisiana, USA (1997)Google Scholar
  17. 17.
    Strelets, M.: Detached eddy simulation of massively separated flows. In: 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA (2001)Google Scholar
  18. 18.
    Stöhr, M., Boxx, I., Carter, C.D., Meier, W.: Experimental study of vortex-flame interaction in a gas turbine model combustor. Combust. Flame 159, 2636–2649 (2012)Google Scholar
  19. 19.
    Syred, N.: A review of instability and oscillation mechanisms in swirl combustion systems. Prog. Energy Combust. Sci. 32, 93–161 (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Z. Mansouri
    • 1
    • 2
    Email author
  • T. Boushaki
    • 1
  • M. Aouissi
    • 2
  • I. Gökalp
    • 1
  1. 1.ICARE, CNRS & University of OrleansOrléansFrance
  2. 2.Laboratory of MechanicsAmar Telidji UniversityLaghouatAlgeria

Personalised recommendations